This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgdprd.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| Assertion | subgdmdprd | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdprd.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | reldmdprd | ⊢ Rel dom DProd | |
| 3 | 2 | brrelex2i | ⊢ ( 𝐻 dom DProd 𝑆 → 𝑆 ∈ V ) |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐻 dom DProd 𝑆 → 𝑆 ∈ V ) ) |
| 5 | 2 | brrelex2i | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 ∈ V ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) → 𝑆 ∈ V ) |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) → 𝑆 ∈ V ) ) |
| 8 | ffvelcdm | ⊢ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐻 ) ) | |
| 9 | 8 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 11 | 10 | subgss | ⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐻 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 12 | 9 11 | syl | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 13 | 1 | subgbas | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 15 | 12 14 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 16 | 15 | biantrud | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 17 | simpll | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 18 | simplr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) | |
| 19 | eldifi | ⊢ ( 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) → 𝑦 ∈ dom 𝑆 ) | |
| 20 | 19 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → 𝑦 ∈ dom 𝑆 ) |
| 21 | 18 20 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 22 | 10 | subgss | ⊢ ( ( 𝑆 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐻 ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 24 | 23 14 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ 𝐴 ) |
| 25 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 26 | eqid | ⊢ ( Cntz ‘ 𝐻 ) = ( Cntz ‘ 𝐻 ) | |
| 27 | 1 25 26 | resscntz | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑦 ) ⊆ 𝐴 ) → ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) = ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) |
| 28 | 17 24 27 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) = ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) |
| 29 | 28 | sseq2d | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) ) |
| 30 | ssin | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∩ 𝐴 ) ) | |
| 31 | 29 30 | bitr4di | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( 𝑆 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 32 | 16 31 | bitr4d | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ ( 𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 33 | 32 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) ∧ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ) → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 34 | 33 | ralbidva | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 35 | subgrcl | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐺 ∈ Grp ) |
| 37 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 38 | 37 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 39 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 40 | 36 38 39 | 3syl | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 41 | 1 | subggrp | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐻 ∈ Grp ) |
| 43 | 10 | subgacs | ⊢ ( 𝐻 ∈ Grp → ( SubGrp ‘ 𝐻 ) ∈ ( ACS ‘ ( Base ‘ 𝐻 ) ) ) |
| 44 | acsmre | ⊢ ( ( SubGrp ‘ 𝐻 ) ∈ ( ACS ‘ ( Base ‘ 𝐻 ) ) → ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ) | |
| 45 | 42 43 44 | 3syl | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ) |
| 46 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) | |
| 47 | imassrn | ⊢ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 | |
| 48 | frn | ⊢ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) | |
| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) |
| 50 | 47 49 | sstrid | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( SubGrp ‘ 𝐻 ) ) |
| 51 | mresspw | ⊢ ( ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) → ( SubGrp ‘ 𝐻 ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ) | |
| 52 | 45 51 | syl | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( SubGrp ‘ 𝐻 ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ) |
| 53 | 50 52 | sstrd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ) |
| 54 | sspwuni | ⊢ ( ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐻 ) ↔ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐻 ) ) | |
| 55 | 53 54 | sylib | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐻 ) ) |
| 56 | 45 46 55 | mrcssidd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 57 | 46 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐻 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 58 | 45 55 57 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 59 | 1 | subsubg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
| 60 | 59 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
| 61 | 58 60 | mpbid | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) |
| 62 | 61 | simpld | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 63 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 64 | 63 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 65 | 40 56 62 64 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 66 | 13 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 67 | 55 66 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝐴 ) |
| 68 | 37 | subgss | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 69 | 68 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 70 | 67 69 | sstrd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 71 | 40 63 70 | mrcssidd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 72 | 63 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 73 | 40 70 72 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 74 | simpll | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 75 | 63 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝐴 ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) |
| 76 | 40 67 74 75 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) |
| 77 | 1 | subsubg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ↔ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ 𝐴 ) ) ) |
| 79 | 73 76 78 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 80 | 46 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ∧ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐻 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 81 | 45 71 79 80 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 82 | 65 81 | eqssd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 83 | 82 | ineq2d | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 84 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 85 | 1 84 | subg0 | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 87 | 86 | sneqd | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → { ( 0g ‘ 𝐺 ) } = { ( 0g ‘ 𝐻 ) } ) |
| 88 | 83 87 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ↔ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) |
| 89 | 34 88 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) ∧ 𝑥 ∈ dom 𝑆 ) → ( ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ↔ ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) |
| 90 | 89 | ralbidva | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ) → ( ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ↔ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) |
| 91 | 90 | pm5.32da | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
| 92 | 1 | subsubg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 93 | elin | ⊢ ( 𝑥 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝒫 𝐴 ) ) | |
| 94 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 95 | 94 | anbi2i | ⊢ ( ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝐴 ) ) |
| 96 | 93 95 | bitri | ⊢ ( 𝑥 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝐴 ) ) |
| 97 | 92 96 | bitr4di | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ↔ 𝑥 ∈ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) ) |
| 98 | 97 | eqrdv | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( SubGrp ‘ 𝐻 ) = ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) |
| 99 | 98 | sseq2d | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ↔ ran 𝑆 ⊆ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) ) |
| 100 | ssin | ⊢ ( ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ran 𝑆 ⊆ ( ( SubGrp ‘ 𝐺 ) ∩ 𝒫 𝐴 ) ) | |
| 101 | 99 100 | bitr4di | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ↔ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
| 102 | 101 | anbi2d | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) ) |
| 103 | df-f | ⊢ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐻 ) ) ) | |
| 104 | df-f | ⊢ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) ) | |
| 105 | 104 | anbi1i | ⊢ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) |
| 106 | anass | ⊢ ( ( ( 𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) | |
| 107 | 105 106 | bitri | ⊢ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( 𝑆 Fn dom 𝑆 ∧ ( ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
| 108 | 102 103 107 | 3bitr4g | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
| 109 | 108 | anbi1d | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 110 | 91 109 | bitr3d | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 111 | 110 | adantr | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 112 | dmexg | ⊢ ( 𝑆 ∈ V → dom 𝑆 ∈ V ) | |
| 113 | 112 | adantl | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → dom 𝑆 ∈ V ) |
| 114 | eqidd | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → dom 𝑆 = dom 𝑆 ) | |
| 115 | 41 | adantr | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → 𝐻 ∈ Grp ) |
| 116 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 117 | 26 116 46 | dmdprd | ⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐻 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
| 118 | 3anass | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ↔ ( 𝐻 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) | |
| 119 | 117 118 | bitrdi | ⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐻 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) ) |
| 120 | 119 | baibd | ⊢ ( ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) ∧ 𝐻 ∈ Grp ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
| 121 | 113 114 115 120 | syl21anc | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐻 ) } ) ) ) ) |
| 122 | 35 | adantr | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → 𝐺 ∈ Grp ) |
| 123 | 25 84 63 | dmdprd | ⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 124 | 3anass | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) | |
| 125 | 123 124 | bitrdi | ⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) ) |
| 126 | 125 | baibd | ⊢ ( ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) ∧ 𝐺 ∈ Grp ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 127 | 113 114 122 126 | syl21anc | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 128 | 127 | anbi1d | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
| 129 | an32 | ⊢ ( ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) | |
| 130 | 128 129 | bitrdi | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ↔ ( ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 131 | 111 121 130 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ V ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |
| 132 | 131 | ex | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ V → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) ) |
| 133 | 4 7 132 | pm5.21ndd | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐻 dom DProd 𝑆 ↔ ( 𝐺 dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴 ) ) ) |