This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgdprd.1 | |- H = ( G |`s A ) |
|
| Assertion | subgdmdprd | |- ( A e. ( SubGrp ` G ) -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdprd.1 | |- H = ( G |`s A ) |
|
| 2 | reldmdprd | |- Rel dom DProd |
|
| 3 | 2 | brrelex2i | |- ( H dom DProd S -> S e. _V ) |
| 4 | 3 | a1i | |- ( A e. ( SubGrp ` G ) -> ( H dom DProd S -> S e. _V ) ) |
| 5 | 2 | brrelex2i | |- ( G dom DProd S -> S e. _V ) |
| 6 | 5 | adantr | |- ( ( G dom DProd S /\ ran S C_ ~P A ) -> S e. _V ) |
| 7 | 6 | a1i | |- ( A e. ( SubGrp ` G ) -> ( ( G dom DProd S /\ ran S C_ ~P A ) -> S e. _V ) ) |
| 8 | ffvelcdm | |- ( ( S : dom S --> ( SubGrp ` H ) /\ x e. dom S ) -> ( S ` x ) e. ( SubGrp ` H ) ) |
|
| 9 | 8 | ad2ant2lr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` x ) e. ( SubGrp ` H ) ) |
| 10 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 11 | 10 | subgss | |- ( ( S ` x ) e. ( SubGrp ` H ) -> ( S ` x ) C_ ( Base ` H ) ) |
| 12 | 9 11 | syl | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` x ) C_ ( Base ` H ) ) |
| 13 | 1 | subgbas | |- ( A e. ( SubGrp ` G ) -> A = ( Base ` H ) ) |
| 14 | 13 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> A = ( Base ` H ) ) |
| 15 | 12 14 | sseqtrrd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` x ) C_ A ) |
| 16 | 15 | biantrud | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( S ` x ) C_ A ) ) ) |
| 17 | simpll | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> A e. ( SubGrp ` G ) ) |
|
| 18 | simplr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> S : dom S --> ( SubGrp ` H ) ) |
|
| 19 | eldifi | |- ( y e. ( dom S \ { x } ) -> y e. dom S ) |
|
| 20 | 19 | ad2antll | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> y e. dom S ) |
| 21 | 18 20 | ffvelcdmd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` y ) e. ( SubGrp ` H ) ) |
| 22 | 10 | subgss | |- ( ( S ` y ) e. ( SubGrp ` H ) -> ( S ` y ) C_ ( Base ` H ) ) |
| 23 | 21 22 | syl | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` y ) C_ ( Base ` H ) ) |
| 24 | 23 14 | sseqtrrd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` y ) C_ A ) |
| 25 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 26 | eqid | |- ( Cntz ` H ) = ( Cntz ` H ) |
|
| 27 | 1 25 26 | resscntz | |- ( ( A e. ( SubGrp ` G ) /\ ( S ` y ) C_ A ) -> ( ( Cntz ` H ) ` ( S ` y ) ) = ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) |
| 28 | 17 24 27 | syl2anc | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( Cntz ` H ) ` ( S ` y ) ) = ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) |
| 29 | 28 | sseq2d | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) <-> ( S ` x ) C_ ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) ) |
| 30 | ssin | |- ( ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( S ` x ) C_ A ) <-> ( S ` x ) C_ ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) |
|
| 31 | 29 30 | bitr4di | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) <-> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( S ` x ) C_ A ) ) ) |
| 32 | 16 31 | bitr4d | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) ) ) |
| 33 | 32 | anassrs | |- ( ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) /\ y e. ( dom S \ { x } ) ) -> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) ) ) |
| 34 | 33 | ralbidva | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) ) ) |
| 35 | subgrcl | |- ( A e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 36 | 35 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> G e. Grp ) |
| 37 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 38 | 37 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 39 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 40 | 36 38 39 | 3syl | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 41 | 1 | subggrp | |- ( A e. ( SubGrp ` G ) -> H e. Grp ) |
| 42 | 41 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> H e. Grp ) |
| 43 | 10 | subgacs | |- ( H e. Grp -> ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) ) |
| 44 | acsmre | |- ( ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
|
| 45 | 42 43 44 | 3syl | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
| 46 | eqid | |- ( mrCls ` ( SubGrp ` H ) ) = ( mrCls ` ( SubGrp ` H ) ) |
|
| 47 | imassrn | |- ( S " ( dom S \ { x } ) ) C_ ran S |
|
| 48 | frn | |- ( S : dom S --> ( SubGrp ` H ) -> ran S C_ ( SubGrp ` H ) ) |
|
| 49 | 48 | ad2antlr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ran S C_ ( SubGrp ` H ) ) |
| 50 | 47 49 | sstrid | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( S " ( dom S \ { x } ) ) C_ ( SubGrp ` H ) ) |
| 51 | mresspw | |- ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) -> ( SubGrp ` H ) C_ ~P ( Base ` H ) ) |
|
| 52 | 45 51 | syl | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( SubGrp ` H ) C_ ~P ( Base ` H ) ) |
| 53 | 50 52 | sstrd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( S " ( dom S \ { x } ) ) C_ ~P ( Base ` H ) ) |
| 54 | sspwuni | |- ( ( S " ( dom S \ { x } ) ) C_ ~P ( Base ` H ) <-> U. ( S " ( dom S \ { x } ) ) C_ ( Base ` H ) ) |
|
| 55 | 53 54 | sylib | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( Base ` H ) ) |
| 56 | 45 46 55 | mrcssidd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
| 57 | 46 | mrccl | |- ( ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( Base ` H ) ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) |
| 58 | 45 55 57 | syl2anc | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) |
| 59 | 1 | subsubg | |- ( A e. ( SubGrp ` G ) -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
| 60 | 59 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
| 61 | 58 60 | mpbid | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) |
| 62 | 61 | simpld | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 63 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 64 | 63 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
| 65 | 40 56 62 64 | syl3anc | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
| 66 | 13 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> A = ( Base ` H ) ) |
| 67 | 55 66 | sseqtrrd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ A ) |
| 68 | 37 | subgss | |- ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) ) |
| 69 | 68 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> A C_ ( Base ` G ) ) |
| 70 | 67 69 | sstrd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( Base ` G ) ) |
| 71 | 40 63 70 | mrcssidd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
| 72 | 63 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 73 | 40 70 72 | syl2anc | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 74 | simpll | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> A e. ( SubGrp ` G ) ) |
|
| 75 | 63 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ A /\ A e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) |
| 76 | 40 67 74 75 | syl3anc | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) |
| 77 | 1 | subsubg | |- ( A e. ( SubGrp ` G ) -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
| 78 | 77 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
| 79 | 73 76 78 | mpbir2and | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) |
| 80 | 46 | mrcsscl | |- ( ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
| 81 | 45 71 79 80 | syl3anc | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
| 82 | 65 81 | eqssd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) = ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
| 83 | 82 | ineq2d | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) ) |
| 84 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 85 | 1 84 | subg0 | |- ( A e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 86 | 85 | ad2antrr | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 87 | 86 | sneqd | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> { ( 0g ` G ) } = { ( 0g ` H ) } ) |
| 88 | 83 87 | eqeq12d | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } <-> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) |
| 89 | 34 88 | anbi12d | |- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) <-> ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) |
| 90 | 89 | ralbidva | |- ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) -> ( A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) <-> A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) |
| 91 | 90 | pm5.32da | |- ( A e. ( SubGrp ` G ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) <-> ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
| 92 | 1 | subsubg | |- ( A e. ( SubGrp ` G ) -> ( x e. ( SubGrp ` H ) <-> ( x e. ( SubGrp ` G ) /\ x C_ A ) ) ) |
| 93 | elin | |- ( x e. ( ( SubGrp ` G ) i^i ~P A ) <-> ( x e. ( SubGrp ` G ) /\ x e. ~P A ) ) |
|
| 94 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 95 | 94 | anbi2i | |- ( ( x e. ( SubGrp ` G ) /\ x e. ~P A ) <-> ( x e. ( SubGrp ` G ) /\ x C_ A ) ) |
| 96 | 93 95 | bitri | |- ( x e. ( ( SubGrp ` G ) i^i ~P A ) <-> ( x e. ( SubGrp ` G ) /\ x C_ A ) ) |
| 97 | 92 96 | bitr4di | |- ( A e. ( SubGrp ` G ) -> ( x e. ( SubGrp ` H ) <-> x e. ( ( SubGrp ` G ) i^i ~P A ) ) ) |
| 98 | 97 | eqrdv | |- ( A e. ( SubGrp ` G ) -> ( SubGrp ` H ) = ( ( SubGrp ` G ) i^i ~P A ) ) |
| 99 | 98 | sseq2d | |- ( A e. ( SubGrp ` G ) -> ( ran S C_ ( SubGrp ` H ) <-> ran S C_ ( ( SubGrp ` G ) i^i ~P A ) ) ) |
| 100 | ssin | |- ( ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) <-> ran S C_ ( ( SubGrp ` G ) i^i ~P A ) ) |
|
| 101 | 99 100 | bitr4di | |- ( A e. ( SubGrp ` G ) -> ( ran S C_ ( SubGrp ` H ) <-> ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
| 102 | 101 | anbi2d | |- ( A e. ( SubGrp ` G ) -> ( ( S Fn dom S /\ ran S C_ ( SubGrp ` H ) ) <-> ( S Fn dom S /\ ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) ) |
| 103 | df-f | |- ( S : dom S --> ( SubGrp ` H ) <-> ( S Fn dom S /\ ran S C_ ( SubGrp ` H ) ) ) |
|
| 104 | df-f | |- ( S : dom S --> ( SubGrp ` G ) <-> ( S Fn dom S /\ ran S C_ ( SubGrp ` G ) ) ) |
|
| 105 | 104 | anbi1i | |- ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) <-> ( ( S Fn dom S /\ ran S C_ ( SubGrp ` G ) ) /\ ran S C_ ~P A ) ) |
| 106 | anass | |- ( ( ( S Fn dom S /\ ran S C_ ( SubGrp ` G ) ) /\ ran S C_ ~P A ) <-> ( S Fn dom S /\ ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
|
| 107 | 105 106 | bitri | |- ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) <-> ( S Fn dom S /\ ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
| 108 | 102 103 107 | 3bitr4g | |- ( A e. ( SubGrp ` G ) -> ( S : dom S --> ( SubGrp ` H ) <-> ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
| 109 | 108 | anbi1d | |- ( A e. ( SubGrp ` G ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 110 | 91 109 | bitr3d | |- ( A e. ( SubGrp ` G ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 111 | 110 | adantr | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 112 | dmexg | |- ( S e. _V -> dom S e. _V ) |
|
| 113 | 112 | adantl | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> dom S e. _V ) |
| 114 | eqidd | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> dom S = dom S ) |
|
| 115 | 41 | adantr | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> H e. Grp ) |
| 116 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 117 | 26 116 46 | dmdprd | |- ( ( dom S e. _V /\ dom S = dom S ) -> ( H dom DProd S <-> ( H e. Grp /\ S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
| 118 | 3anass | |- ( ( H e. Grp /\ S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) <-> ( H e. Grp /\ ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
|
| 119 | 117 118 | bitrdi | |- ( ( dom S e. _V /\ dom S = dom S ) -> ( H dom DProd S <-> ( H e. Grp /\ ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) ) |
| 120 | 119 | baibd | |- ( ( ( dom S e. _V /\ dom S = dom S ) /\ H e. Grp ) -> ( H dom DProd S <-> ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
| 121 | 113 114 115 120 | syl21anc | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( H dom DProd S <-> ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
| 122 | 35 | adantr | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> G e. Grp ) |
| 123 | 25 84 63 | dmdprd | |- ( ( dom S e. _V /\ dom S = dom S ) -> ( G dom DProd S <-> ( G e. Grp /\ S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 124 | 3anass | |- ( ( G e. Grp /\ S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) <-> ( G e. Grp /\ ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
|
| 125 | 123 124 | bitrdi | |- ( ( dom S e. _V /\ dom S = dom S ) -> ( G dom DProd S <-> ( G e. Grp /\ ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) ) |
| 126 | 125 | baibd | |- ( ( ( dom S e. _V /\ dom S = dom S ) /\ G e. Grp ) -> ( G dom DProd S <-> ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 127 | 113 114 122 126 | syl21anc | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( G dom DProd S <-> ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 128 | 127 | anbi1d | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( ( G dom DProd S /\ ran S C_ ~P A ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) /\ ran S C_ ~P A ) ) ) |
| 129 | an32 | |- ( ( ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) /\ ran S C_ ~P A ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) |
|
| 130 | 128 129 | bitrdi | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( ( G dom DProd S /\ ran S C_ ~P A ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 131 | 111 121 130 | 3bitr4d | |- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) |
| 132 | 131 | ex | |- ( A e. ( SubGrp ` G ) -> ( S e. _V -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) ) |
| 133 | 4 7 132 | pm5.21ndd | |- ( A e. ( SubGrp ` G ) -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) |