This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Proof shortened by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmdprd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| dmdprd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| dmdprd.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | dmdprd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 2 | dmdprd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | dmdprd.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | elex | ⊢ ( 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } → 𝑆 ∈ V ) | |
| 5 | 4 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } → 𝑆 ∈ V ) ) |
| 6 | fex | ⊢ ( ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ 𝐼 ∈ 𝑉 ) → 𝑆 ∈ V ) | |
| 7 | 6 | expcom | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ V ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ V ) ) |
| 9 | 8 | adantrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) → 𝑆 ∈ V ) ) |
| 10 | df-sbc | ⊢ ( [ 𝑆 / ℎ ] ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ↔ 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ) | |
| 11 | simpr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑆 ∈ V ) → 𝑆 ∈ V ) | |
| 12 | simpr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ℎ = 𝑆 ) | |
| 13 | 12 | dmeqd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → dom ℎ = dom 𝑆 ) |
| 14 | simplr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → dom 𝑆 = 𝐼 ) | |
| 15 | 13 14 | eqtrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → dom ℎ = 𝐼 ) |
| 16 | 12 15 | feq12d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ↔ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) ) |
| 17 | 15 | difeq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( dom ℎ ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑥 } ) ) |
| 18 | 12 | fveq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ℎ ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 19 | 12 | fveq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ℎ ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 20 | 19 | fveq2d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 21 | 18 20 | sseq12d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 22 | 17 21 | raleqbidv | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 23 | 12 17 | imaeq12d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) = ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 24 | 23 | unieqd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) = ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 26 | 18 25 | ineq12d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 27 | 26 | eqeq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ↔ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) |
| 28 | 22 27 | anbi12d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ↔ ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) |
| 29 | 15 28 | raleqbidv | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ↔ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) |
| 30 | 16 29 | anbi12d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ ℎ = 𝑆 ) → ( ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ↔ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 31 | 30 | adantlr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑆 ∈ V ) ∧ ℎ = 𝑆 ) → ( ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ↔ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 32 | 11 31 | sbcied | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑆 ∈ V ) → ( [ 𝑆 / ℎ ] ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ↔ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 33 | 10 32 | bitr3id | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑆 ∈ V ) → ( 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ↔ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 34 | 33 | ex | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝑆 ∈ V → ( 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ↔ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) ) |
| 35 | 5 9 34 | pm5.21ndd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ↔ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 36 | 35 | anbi2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) ) |
| 37 | df-br | ⊢ ( 𝐺 dom DProd 𝑆 ↔ 〈 𝐺 , 𝑆 〉 ∈ dom DProd ) | |
| 38 | fvex | ⊢ ( 𝑠 ‘ 𝑥 ) ∈ V | |
| 39 | 38 | rgenw | ⊢ ∀ 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∈ V |
| 40 | ixpexg | ⊢ ( ∀ 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∈ V → X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∈ V ) | |
| 41 | 39 40 | ax-mp | ⊢ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∈ V |
| 42 | 41 | mptrabex | ⊢ ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V |
| 43 | 42 | rnex | ⊢ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V |
| 44 | 43 | rgen2w | ⊢ ∀ 𝑔 ∈ Grp ∀ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V |
| 45 | df-dprd | ⊢ DProd = ( 𝑔 ∈ Grp , 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ↦ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) | |
| 46 | 45 | fmpox | ⊢ ( ∀ 𝑔 ∈ Grp ∀ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V ↔ DProd : ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ⟶ V ) |
| 47 | 44 46 | mpbi | ⊢ DProd : ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ⟶ V |
| 48 | 47 | fdmi | ⊢ dom DProd = ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) |
| 49 | 48 | eleq2i | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ dom DProd ↔ 〈 𝐺 , 𝑆 〉 ∈ ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ) |
| 50 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( SubGrp ‘ 𝑔 ) = ( SubGrp ‘ 𝐺 ) ) | |
| 51 | 50 | feq3d | ⊢ ( 𝑔 = 𝐺 → ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ↔ ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ) ) |
| 52 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Cntz ‘ 𝑔 ) = ( Cntz ‘ 𝐺 ) ) | |
| 53 | 52 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Cntz ‘ 𝑔 ) = 𝑍 ) |
| 54 | 53 | fveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) = ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ) |
| 55 | 54 | sseq2d | ⊢ ( 𝑔 = 𝐺 → ( ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ↔ ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ) ) |
| 56 | 55 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ) ) |
| 57 | 50 | fveq2d | ⊢ ( 𝑔 = 𝐺 → ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ) |
| 58 | 57 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) = 𝐾 ) |
| 59 | 58 | fveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) = ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) |
| 60 | 59 | ineq2d | ⊢ ( 𝑔 = 𝐺 → ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) ) |
| 61 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) | |
| 62 | 61 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
| 63 | 62 | sneqd | ⊢ ( 𝑔 = 𝐺 → { ( 0g ‘ 𝑔 ) } = { 0 } ) |
| 64 | 60 63 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ↔ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) |
| 65 | 56 64 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ↔ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) |
| 66 | 65 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ↔ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) |
| 67 | 51 66 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) ↔ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 68 | 67 | abbidv | ⊢ ( 𝑔 = 𝐺 → { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } = { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ) |
| 69 | 68 | opeliunxp2 | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ) ) |
| 70 | 37 49 69 | 3bitri | ⊢ ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) } ) ) |
| 71 | 3anass | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) | |
| 72 | 36 70 71 | 3bitr4g | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |