This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resscntz.p | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| resscntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| resscntz.y | ⊢ 𝑌 = ( Cntz ‘ 𝐻 ) | ||
| Assertion | resscntz | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑌 ‘ 𝑆 ) = ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resscntz.p | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | resscntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | resscntz.y | ⊢ 𝑌 = ( Cntz ‘ 𝐻 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 5 | 4 3 | cntzrcl | ⊢ ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → ( 𝐻 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
| 6 | 5 | simprd | ⊢ ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐻 ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 8 | 1 7 | ressbasss | ⊢ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝐺 ) |
| 9 | 6 8 | sstrdi | ⊢ ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 11 | elinel1 | ⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 12 | 7 2 | cntzrcl | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝐺 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 13 | 12 | simprd | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 14 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 16 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) | |
| 17 | 1 7 | ressbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
| 18 | 17 | eleq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 19 | 16 18 | bitr3id | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 20 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 21 | 1 20 | ressplusg | ⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 22 | 21 | oveqd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 23 | 21 | oveqd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 26 | 19 25 | anbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
| 28 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) | |
| 29 | 27 28 | bitr3di | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) ) |
| 30 | ssin | ⊢ ( ( 𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ↔ 𝑆 ⊆ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ) | |
| 31 | 17 | sseq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑆 ⊆ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ↔ 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
| 32 | 30 31 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ↔ 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
| 33 | 32 | biimpd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
| 34 | 33 | impl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐻 ) ) |
| 35 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 36 | 4 35 3 | elcntz | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝐻 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
| 37 | 34 36 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
| 38 | elin | ⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝐴 ) ) | |
| 39 | 38 | biancomi | ⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 40 | 7 20 2 | elcntz | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 41 | 40 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 42 | 41 | anbi2d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) ) |
| 43 | 39 42 | bitrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) ) |
| 44 | 29 37 43 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) ) |
| 45 | 44 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) ) ) |
| 46 | 10 15 45 | pm5.21ndd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) ) |
| 47 | 46 | eqrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑌 ‘ 𝑆 ) = ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) |