This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| Assertion | subsubg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐺 ∈ Grp ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 5 | 4 | subgss | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 7 | 1 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 9 | 6 8 | sseqtrrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ⊆ 𝑆 ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 11 | 10 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 9 12 | sstrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 | 1 | oveq1i | ⊢ ( 𝐻 ↾s 𝐴 ) = ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) |
| 15 | ressabs | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) | |
| 16 | 14 15 | eqtrid | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 17 | 9 16 | syldan | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 18 | eqid | ⊢ ( 𝐻 ↾s 𝐴 ) = ( 𝐻 ↾s 𝐴 ) | |
| 19 | 18 | subggrp | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) → ( 𝐻 ↾s 𝐴 ) ∈ Grp ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Grp ) |
| 21 | 17 20 | eqeltrrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Grp ) |
| 22 | 10 | issubg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s 𝐴 ) ∈ Grp ) ) |
| 23 | 3 13 21 22 | syl3anbrc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 | 23 9 | jca | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) |
| 25 | 1 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐻 ∈ Grp ) |
| 27 | simprr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) | |
| 28 | 7 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 29 | 27 28 | sseqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 30 | 16 | adantrl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 31 | eqid | ⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) | |
| 32 | 31 | subggrp | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝐴 ) ∈ Grp ) |
| 33 | 32 | ad2antrl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Grp ) |
| 34 | 30 33 | eqeltrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Grp ) |
| 35 | 4 | issubg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝐻 ∈ Grp ∧ 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 𝐻 ↾s 𝐴 ) ∈ Grp ) ) |
| 36 | 26 29 34 35 | syl3anbrc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 37 | 24 36 | impbida | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |