This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sraassab.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| sraassab.z | ⊢ 𝑍 = ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) | ||
| sraassab.w | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | ||
| sraassab.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) | ||
| Assertion | sraassab | ⊢ ( 𝜑 → ( 𝐴 ∈ AssAlg ↔ 𝑆 ⊆ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraassab.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| 2 | sraassab.z | ⊢ 𝑍 = ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) | |
| 3 | sraassab.w | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | |
| 4 | sraassab.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | 5 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 | 8 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 10 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝐴 ∈ AssAlg ) | |
| 11 | eqid | ⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) | |
| 12 | 11 | subrgbas | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 14 | 1 | a1i | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 15 | 14 7 | srasca | ⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 17 | 13 16 | eqtrd | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 18 | 17 | eqimssd | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 19 | 18 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 20 | 19 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 21 | 14 7 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 22 | 21 | eqimssd | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝐴 ) ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝐴 ) ) |
| 24 | 23 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 25 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 26 | 5 25 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 27 | 3 26 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 28 | 27 21 | eleqtrd | ⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝐴 ) ) |
| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝐴 ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 31 | eqid | ⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) | |
| 32 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) | |
| 33 | eqid | ⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) | |
| 34 | eqid | ⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) | |
| 35 | 30 31 32 33 34 | assaassr | ⊢ ( ( 𝐴 ∈ AssAlg ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 36 | 10 20 24 29 35 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 37 | 14 7 | sramulr | ⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 38 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 39 | 38 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 40 | 14 7 | sravsca | ⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 41 | 40 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 42 | 41 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) |
| 43 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 44 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ Ring ) |
| 45 | 9 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 46 | 5 43 25 44 45 | ringridmd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = 𝑦 ) |
| 47 | 42 46 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) = 𝑦 ) |
| 48 | 47 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 49 | 39 48 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 50 | 41 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 51 | 38 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) |
| 52 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) | |
| 53 | 5 43 25 44 52 | ringridmd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = 𝑥 ) |
| 54 | 51 53 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) = 𝑥 ) |
| 55 | 54 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 56 | 50 55 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 57 | 36 49 56 | 3eqtr3rd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 58 | 57 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 59 | eqid | ⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) | |
| 60 | 59 5 | mgpbas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
| 61 | 59 43 | mgpplusg | ⊢ ( .r ‘ 𝑊 ) = ( +g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 62 | 60 61 2 | elcntr | ⊢ ( 𝑦 ∈ 𝑍 ↔ ( 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) |
| 63 | 9 58 62 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑍 ) |
| 64 | 63 | ex | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝑍 ) ) |
| 65 | 64 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ AssAlg ) → 𝑆 ⊆ 𝑍 ) |
| 66 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 67 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 68 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 69 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 70 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 71 | 1 | sralmod | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |
| 72 | 4 71 | syl | ⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝐴 ∈ LMod ) |
| 74 | 1 5 | sraring | ⊢ ( ( 𝑊 ∈ Ring ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → 𝐴 ∈ Ring ) |
| 75 | 3 7 74 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
| 76 | 75 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝐴 ∈ Ring ) |
| 77 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
| 78 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 79 | 78 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 80 | 79 | 3ad2antr1 | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 81 | simpr2 | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 82 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) | |
| 83 | 5 43 77 80 81 82 | ringassd | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 84 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝑍 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑍 ) | |
| 85 | 84 | ad2ant2lr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ 𝑍 ) |
| 86 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 87 | 60 61 2 | cntri | ⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 88 | 85 86 87 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 89 | 88 | 3adantr3 | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) |
| 90 | 89 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑧 ) ) |
| 91 | 5 43 77 81 80 82 | ringassd | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 92 | 90 83 91 | 3eqtr3rd | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 93 | 66 67 68 69 70 73 76 83 92 | isassad | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑍 ) → 𝐴 ∈ AssAlg ) |
| 94 | 65 93 | impbida | ⊢ ( 𝜑 → ( 𝐴 ∈ AssAlg ↔ 𝑆 ⊆ 𝑍 ) ) |