This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elcntr.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| elcntr.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| elcntr.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | ||
| Assertion | elcntr | ⊢ ( 𝐴 ∈ 𝑍 ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcntr.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | elcntr.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | elcntr.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) | |
| 5 | 1 4 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) |
| 6 | 3 5 | eqtr4i | ⊢ 𝑍 = ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) |
| 7 | 6 | eleq2i | ⊢ ( 𝐴 ∈ 𝑍 ↔ 𝐴 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ) |
| 8 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 9 | 1 2 4 | elcntz | ⊢ ( 𝐵 ⊆ 𝐵 → ( 𝐴 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) ) |
| 10 | 8 9 | ax-mp | ⊢ ( 𝐴 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) |
| 11 | 7 10 | bitri | ⊢ ( 𝐴 ∈ 𝑍 ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 + 𝑦 ) = ( 𝑦 + 𝐴 ) ) ) |