This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof shortened by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sraassa.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| Assertion | sraassa | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraassa.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 3 | 2 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 5 | eqid | ⊢ ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) = ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) | |
| 6 | 2 5 | crngbascntr | ⊢ ( 𝑊 ∈ CRing → ( Base ‘ 𝑊 ) = ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) ) |
| 8 | 4 7 | sseqtrd | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) ) |
| 9 | crngring | ⊢ ( 𝑊 ∈ CRing → 𝑊 ∈ Ring ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑊 ∈ Ring ) |
| 11 | simpr | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) | |
| 12 | 1 5 10 11 | sraassab | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ AssAlg ↔ 𝑆 ⊆ ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) ) ) |
| 13 | 8 12 | mpbird | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ AssAlg ) |