This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sraassab.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| sraassab.z | |- Z = ( Cntr ` ( mulGrp ` W ) ) |
||
| sraassab.w | |- ( ph -> W e. Ring ) |
||
| sraassab.s | |- ( ph -> S e. ( SubRing ` W ) ) |
||
| Assertion | sraassab | |- ( ph -> ( A e. AssAlg <-> S C_ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraassab.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| 2 | sraassab.z | |- Z = ( Cntr ` ( mulGrp ` W ) ) |
|
| 3 | sraassab.w | |- ( ph -> W e. Ring ) |
|
| 4 | sraassab.s | |- ( ph -> S e. ( SubRing ` W ) ) |
|
| 5 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 6 | 5 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 7 | 4 6 | syl | |- ( ph -> S C_ ( Base ` W ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ A e. AssAlg ) -> S C_ ( Base ` W ) ) |
| 9 | 8 | sselda | |- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> y e. ( Base ` W ) ) |
| 10 | simpllr | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> A e. AssAlg ) |
|
| 11 | eqid | |- ( W |`s S ) = ( W |`s S ) |
|
| 12 | 11 | subrgbas | |- ( S e. ( SubRing ` W ) -> S = ( Base ` ( W |`s S ) ) ) |
| 13 | 4 12 | syl | |- ( ph -> S = ( Base ` ( W |`s S ) ) ) |
| 14 | 1 | a1i | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
| 15 | 14 7 | srasca | |- ( ph -> ( W |`s S ) = ( Scalar ` A ) ) |
| 16 | 15 | fveq2d | |- ( ph -> ( Base ` ( W |`s S ) ) = ( Base ` ( Scalar ` A ) ) ) |
| 17 | 13 16 | eqtrd | |- ( ph -> S = ( Base ` ( Scalar ` A ) ) ) |
| 18 | 17 | eqimssd | |- ( ph -> S C_ ( Base ` ( Scalar ` A ) ) ) |
| 19 | 18 | sselda | |- ( ( ph /\ y e. S ) -> y e. ( Base ` ( Scalar ` A ) ) ) |
| 20 | 19 | ad4ant13 | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> y e. ( Base ` ( Scalar ` A ) ) ) |
| 21 | 14 7 | srabase | |- ( ph -> ( Base ` W ) = ( Base ` A ) ) |
| 22 | 21 | eqimssd | |- ( ph -> ( Base ` W ) C_ ( Base ` A ) ) |
| 23 | 22 | ad2antrr | |- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> ( Base ` W ) C_ ( Base ` A ) ) |
| 24 | 23 | sselda | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> x e. ( Base ` A ) ) |
| 25 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 26 | 5 25 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 27 | 3 26 | syl | |- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
| 28 | 27 21 | eleqtrd | |- ( ph -> ( 1r ` W ) e. ( Base ` A ) ) |
| 29 | 28 | ad3antrrr | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( 1r ` W ) e. ( Base ` A ) ) |
| 30 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 31 | eqid | |- ( Scalar ` A ) = ( Scalar ` A ) |
|
| 32 | eqid | |- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
|
| 33 | eqid | |- ( .s ` A ) = ( .s ` A ) |
|
| 34 | eqid | |- ( .r ` A ) = ( .r ` A ) |
|
| 35 | 30 31 32 33 34 | assaassr | |- ( ( A e. AssAlg /\ ( y e. ( Base ` ( Scalar ` A ) ) /\ x e. ( Base ` A ) /\ ( 1r ` W ) e. ( Base ` A ) ) ) -> ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) ) |
| 36 | 10 20 24 29 35 | syl13anc | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) ) |
| 37 | 14 7 | sramulr | |- ( ph -> ( .r ` W ) = ( .r ` A ) ) |
| 38 | 37 | ad3antrrr | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( .r ` W ) = ( .r ` A ) ) |
| 39 | 38 | oveqd | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) ) |
| 40 | 14 7 | sravsca | |- ( ph -> ( .r ` W ) = ( .s ` A ) ) |
| 41 | 40 | ad3antrrr | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( .r ` W ) = ( .s ` A ) ) |
| 42 | 41 | oveqd | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( 1r ` W ) ) = ( y ( .s ` A ) ( 1r ` W ) ) ) |
| 43 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 44 | 3 | ad3antrrr | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> W e. Ring ) |
| 45 | 9 | adantr | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> y e. ( Base ` W ) ) |
| 46 | 5 43 25 44 45 | ringridmd | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( 1r ` W ) ) = y ) |
| 47 | 42 46 | eqtr3d | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .s ` A ) ( 1r ` W ) ) = y ) |
| 48 | 47 | oveq2d | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( x ( .r ` W ) y ) ) |
| 49 | 39 48 | eqtr3d | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` A ) ( y ( .s ` A ) ( 1r ` W ) ) ) = ( x ( .r ` W ) y ) ) |
| 50 | 41 | oveqd | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( x ( .r ` A ) ( 1r ` W ) ) ) = ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) ) |
| 51 | 38 | oveqd | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( 1r ` W ) ) = ( x ( .r ` A ) ( 1r ` W ) ) ) |
| 52 | simpr | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> x e. ( Base ` W ) ) |
|
| 53 | 5 43 25 44 52 | ringridmd | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` W ) ( 1r ` W ) ) = x ) |
| 54 | 51 53 | eqtr3d | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( x ( .r ` A ) ( 1r ` W ) ) = x ) |
| 55 | 54 | oveq2d | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) ( x ( .r ` A ) ( 1r ` W ) ) ) = ( y ( .r ` W ) x ) ) |
| 56 | 50 55 | eqtr3d | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .s ` A ) ( x ( .r ` A ) ( 1r ` W ) ) ) = ( y ( .r ` W ) x ) ) |
| 57 | 36 49 56 | 3eqtr3rd | |- ( ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) /\ x e. ( Base ` W ) ) -> ( y ( .r ` W ) x ) = ( x ( .r ` W ) y ) ) |
| 58 | 57 | ralrimiva | |- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> A. x e. ( Base ` W ) ( y ( .r ` W ) x ) = ( x ( .r ` W ) y ) ) |
| 59 | eqid | |- ( mulGrp ` W ) = ( mulGrp ` W ) |
|
| 60 | 59 5 | mgpbas | |- ( Base ` W ) = ( Base ` ( mulGrp ` W ) ) |
| 61 | 59 43 | mgpplusg | |- ( .r ` W ) = ( +g ` ( mulGrp ` W ) ) |
| 62 | 60 61 2 | elcntr | |- ( y e. Z <-> ( y e. ( Base ` W ) /\ A. x e. ( Base ` W ) ( y ( .r ` W ) x ) = ( x ( .r ` W ) y ) ) ) |
| 63 | 9 58 62 | sylanbrc | |- ( ( ( ph /\ A e. AssAlg ) /\ y e. S ) -> y e. Z ) |
| 64 | 63 | ex | |- ( ( ph /\ A e. AssAlg ) -> ( y e. S -> y e. Z ) ) |
| 65 | 64 | ssrdv | |- ( ( ph /\ A e. AssAlg ) -> S C_ Z ) |
| 66 | 21 | adantr | |- ( ( ph /\ S C_ Z ) -> ( Base ` W ) = ( Base ` A ) ) |
| 67 | 15 | adantr | |- ( ( ph /\ S C_ Z ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 68 | 13 | adantr | |- ( ( ph /\ S C_ Z ) -> S = ( Base ` ( W |`s S ) ) ) |
| 69 | 40 | adantr | |- ( ( ph /\ S C_ Z ) -> ( .r ` W ) = ( .s ` A ) ) |
| 70 | 37 | adantr | |- ( ( ph /\ S C_ Z ) -> ( .r ` W ) = ( .r ` A ) ) |
| 71 | 1 | sralmod | |- ( S e. ( SubRing ` W ) -> A e. LMod ) |
| 72 | 4 71 | syl | |- ( ph -> A e. LMod ) |
| 73 | 72 | adantr | |- ( ( ph /\ S C_ Z ) -> A e. LMod ) |
| 74 | 1 5 | sraring | |- ( ( W e. Ring /\ S C_ ( Base ` W ) ) -> A e. Ring ) |
| 75 | 3 7 74 | syl2anc | |- ( ph -> A e. Ring ) |
| 76 | 75 | adantr | |- ( ( ph /\ S C_ Z ) -> A e. Ring ) |
| 77 | 3 | ad2antrr | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
| 78 | 7 | adantr | |- ( ( ph /\ S C_ Z ) -> S C_ ( Base ` W ) ) |
| 79 | 78 | sselda | |- ( ( ( ph /\ S C_ Z ) /\ x e. S ) -> x e. ( Base ` W ) ) |
| 80 | 79 | 3ad2antr1 | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 81 | simpr2 | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
|
| 82 | simpr3 | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
|
| 83 | 5 43 77 80 81 82 | ringassd | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 84 | ssel2 | |- ( ( S C_ Z /\ x e. S ) -> x e. Z ) |
|
| 85 | 84 | ad2ant2lr | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) ) ) -> x e. Z ) |
| 86 | simprr | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
|
| 87 | 60 61 2 | cntri | |- ( ( x e. Z /\ y e. ( Base ` W ) ) -> ( x ( .r ` W ) y ) = ( y ( .r ` W ) x ) ) |
| 88 | 85 86 87 | syl2anc | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( y ( .r ` W ) x ) ) |
| 89 | 88 | 3adantr3 | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( y ( .r ` W ) x ) ) |
| 90 | 89 | oveq1d | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( ( y ( .r ` W ) x ) ( .r ` W ) z ) ) |
| 91 | 5 43 77 81 80 82 | ringassd | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( y ( .r ` W ) x ) ( .r ` W ) z ) = ( y ( .r ` W ) ( x ( .r ` W ) z ) ) ) |
| 92 | 90 83 91 | 3eqtr3rd | |- ( ( ( ph /\ S C_ Z ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .r ` W ) z ) ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 93 | 66 67 68 69 70 73 76 83 92 | isassad | |- ( ( ph /\ S C_ Z ) -> A e. AssAlg ) |
| 94 | 65 93 | impbida | |- ( ph -> ( A e. AssAlg <-> S C_ Z ) ) |