This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isassa.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| isassa.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| isassa.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| isassa.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| isassa.t | ⊢ × = ( .r ‘ 𝑊 ) | ||
| Assertion | assaassr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassa.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | isassa.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | isassa.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | isassa.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | isassa.t | ⊢ × = ( .r ‘ 𝑊 ) | |
| 6 | 1 2 3 4 5 | assalem | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |