This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by SN, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isassad.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | |
| isassad.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | ||
| isassad.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) | ||
| isassad.s | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | ||
| isassad.t | ⊢ ( 𝜑 → × = ( .r ‘ 𝑊 ) ) | ||
| isassad.1 | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| isassad.2 | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | ||
| isassad.4 | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) | ||
| isassad.5 | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) | ||
| Assertion | isassad | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassad.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | |
| 2 | isassad.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | |
| 3 | isassad.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) | |
| 4 | isassad.s | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | |
| 5 | isassad.t | ⊢ ( 𝜑 → × = ( .r ‘ 𝑊 ) ) | |
| 6 | isassad.1 | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 7 | isassad.2 | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | |
| 8 | isassad.4 | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) | |
| 9 | isassad.5 | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) | |
| 10 | 6 7 | jca | ⊢ ( 𝜑 → ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ) |
| 11 | 8 9 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
| 12 | 11 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
| 13 | 2 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 | 3 13 | eqtrd | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 15 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑟 · 𝑥 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
| 16 | eqidd | ⊢ ( 𝜑 → 𝑦 = 𝑦 ) | |
| 17 | 5 15 16 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 18 | eqidd | ⊢ ( 𝜑 → 𝑟 = 𝑟 ) | |
| 19 | 5 | oveqd | ⊢ ( 𝜑 → ( 𝑥 × 𝑦 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
| 20 | 4 18 19 | oveq123d | ⊢ ( 𝜑 → ( 𝑟 · ( 𝑥 × 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) |
| 21 | 17 20 | eqeq12d | ⊢ ( 𝜑 → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
| 22 | eqidd | ⊢ ( 𝜑 → 𝑥 = 𝑥 ) | |
| 23 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑟 · 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 24 | 5 22 23 | oveq123d | ⊢ ( 𝜑 → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 25 | 24 20 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
| 26 | 21 25 | anbi12d | ⊢ ( 𝜑 → ( ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 27 | 1 26 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 28 | 1 27 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 29 | 14 28 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 30 | 12 29 | mpbid | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 32 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 33 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 34 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 35 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 36 | 31 32 33 34 35 | isassa | ⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 37 | 10 30 36 | sylanbrc | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |