This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sraring.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) | |
| sraring.2 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | sraring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵 ) → 𝐴 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraring.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) | |
| 2 | sraring.2 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | 2 | a1i | ⊢ ( 𝑉 ⊆ 𝐵 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 4 | 1 | a1i | ⊢ ( 𝑉 ⊆ 𝐵 → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) ) |
| 5 | id | ⊢ ( 𝑉 ⊆ 𝐵 → 𝑉 ⊆ 𝐵 ) | |
| 6 | 5 2 | sseqtrdi | ⊢ ( 𝑉 ⊆ 𝐵 → 𝑉 ⊆ ( Base ‘ 𝑅 ) ) |
| 7 | 4 6 | srabase | ⊢ ( 𝑉 ⊆ 𝐵 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
| 8 | 2 7 | eqtrid | ⊢ ( 𝑉 ⊆ 𝐵 → 𝐵 = ( Base ‘ 𝐴 ) ) |
| 9 | 4 6 | sraaddg | ⊢ ( 𝑉 ⊆ 𝐵 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐴 ) ) |
| 10 | 9 | oveqdr | ⊢ ( ( 𝑉 ⊆ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 11 | 4 6 | sramulr | ⊢ ( 𝑉 ⊆ 𝐵 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐴 ) ) |
| 12 | 11 | oveqdr | ⊢ ( ( 𝑉 ⊆ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
| 13 | 3 8 10 12 | ringpropd | ⊢ ( 𝑉 ⊆ 𝐵 → ( 𝑅 ∈ Ring ↔ 𝐴 ∈ Ring ) ) |
| 14 | 13 | biimpac | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵 ) → 𝐴 ∈ Ring ) |