This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringassd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringassd.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringassd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringassd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringassd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ringassd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ringassd | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringassd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringassd.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringassd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | ringassd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | ringassd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | ringassd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | 1 2 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |