This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality and domain of a sequence shifted by A . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftfn | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } | |
| 3 | 2 | a1i | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 4 | fnfun | ⊢ ( 𝐹 Fn 𝐵 → Fun 𝐹 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Fun 𝐹 ) |
| 6 | funmo | ⊢ ( Fun 𝐹 → ∃* 𝑤 ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) | |
| 7 | vex | ⊢ 𝑧 ∈ V | |
| 8 | vex | ⊢ 𝑤 ∈ V | |
| 9 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ ) ) | |
| 10 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 − 𝐴 ) = ( 𝑧 − 𝐴 ) ) | |
| 11 | 10 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 − 𝐴 ) 𝐹 𝑦 ↔ ( 𝑧 − 𝐴 ) 𝐹 𝑦 ) ) |
| 12 | 9 11 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑦 ) ) ) |
| 13 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 − 𝐴 ) 𝐹 𝑦 ↔ ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) ) ) |
| 15 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } | |
| 16 | 7 8 12 14 15 | brab | ⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ↔ ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) ) |
| 17 | 16 | simprbi | ⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 → ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) |
| 18 | 17 | moimi | ⊢ ( ∃* 𝑤 ( 𝑧 − 𝐴 ) 𝐹 𝑤 → ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
| 19 | 6 18 | syl | ⊢ ( Fun 𝐹 → ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
| 20 | 19 | alrimiv | ⊢ ( Fun 𝐹 → ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
| 21 | 5 20 | syl | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
| 22 | dffun6 | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ↔ ( Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∧ ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) ) | |
| 23 | 3 21 22 | sylanbrc | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 24 | 1 | shftfval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 26 | 25 | funeqd | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( Fun ( 𝐹 shift 𝐴 ) ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) ) |
| 27 | 23 26 | mpbird | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Fun ( 𝐹 shift 𝐴 ) ) |
| 28 | 1 | shftdm | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } ) |
| 29 | fndm | ⊢ ( 𝐹 Fn 𝐵 → dom 𝐹 = 𝐵 ) | |
| 30 | 29 | eleq2d | ⊢ ( 𝐹 Fn 𝐵 → ( ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ↔ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ) |
| 31 | 30 | rabbidv | ⊢ ( 𝐹 Fn 𝐵 → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |
| 32 | 28 31 | sylan9eqr | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |
| 33 | df-fn | ⊢ ( ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ↔ ( Fun ( 𝐹 shift 𝐴 ) ∧ dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) ) | |
| 34 | 27 32 33 | sylanbrc | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |