This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of a relation shifted by A . The set on the right is more commonly notated as ( dom F + A ) (meaning add A to every element of dom F ). (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftdm | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | 1 | shftfval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 3 | 2 | dmeqd | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝐹 shift 𝐴 ) = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 4 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) | |
| 5 | ovex | ⊢ ( 𝑥 − 𝐴 ) ∈ V | |
| 6 | 5 | eldm | ⊢ ( ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ↔ ∃ 𝑦 ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) |
| 7 | 6 | anbi2i | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) ↔ ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) |
| 8 | 4 7 | bitr4i | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) ) |
| 9 | 8 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) } |
| 10 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } | |
| 11 | df-rab | ⊢ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) } | |
| 12 | 9 10 11 | 3eqtr4i | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } |
| 13 | 3 12 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } ) |