This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the sequence shifter operation is a function on CC . A is ordinarily an integer. (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftfval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | ovex | ⊢ ( 𝑥 − 𝐴 ) ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | breldm | ⊢ ( ( 𝑥 − 𝐴 ) 𝐹 𝑦 → ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) |
| 5 | npcan | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) | |
| 6 | 5 | eqcomd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
| 8 | oveq1 | ⊢ ( 𝑤 = ( 𝑥 − 𝐴 ) → ( 𝑤 + 𝐴 ) = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) | |
| 9 | 8 | rspceeqv | ⊢ ( ( ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ∧ 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) → ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) |
| 10 | 4 7 9 | syl2anr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | eqeq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 = ( 𝑤 + 𝐴 ) ↔ 𝑥 = ( 𝑤 + 𝐴 ) ) ) | |
| 13 | 12 | rexbidv | ⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) ↔ ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) ) |
| 14 | 11 13 | elab | ⊢ ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ↔ ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) |
| 15 | 10 14 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ) |
| 16 | 2 3 | brelrn | ⊢ ( ( 𝑥 − 𝐴 ) 𝐹 𝑦 → 𝑦 ∈ ran 𝐹 ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → 𝑦 ∈ ran 𝐹 ) |
| 18 | 15 17 | jca | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) ) |
| 19 | 18 | expl | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) ) ) |
| 20 | 19 | ssopab2dv | ⊢ ( 𝐴 ∈ ℂ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) } ) |
| 21 | df-xp | ⊢ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) } | |
| 22 | 20 21 | sseqtrrdi | ⊢ ( 𝐴 ∈ ℂ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ⊆ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ) |
| 23 | 1 | dmex | ⊢ dom 𝐹 ∈ V |
| 24 | 23 | abrexex | ⊢ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∈ V |
| 25 | 1 | rnex | ⊢ ran 𝐹 ∈ V |
| 26 | 24 25 | xpex | ⊢ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ∈ V |
| 27 | ssexg | ⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ⊆ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ∧ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) | |
| 28 | 22 26 27 | sylancl | ⊢ ( 𝐴 ∈ ℂ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) |
| 29 | breq | ⊢ ( 𝑧 = 𝐹 → ( ( 𝑥 − 𝑤 ) 𝑧 𝑦 ↔ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) ) | |
| 30 | 29 | anbi2d | ⊢ ( 𝑧 = 𝐹 → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝑧 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) ) ) |
| 31 | 30 | opabbidv | ⊢ ( 𝑧 = 𝐹 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝑧 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) } ) |
| 32 | oveq2 | ⊢ ( 𝑤 = 𝐴 → ( 𝑥 − 𝑤 ) = ( 𝑥 − 𝐴 ) ) | |
| 33 | 32 | breq1d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 − 𝑤 ) 𝐹 𝑦 ↔ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) |
| 34 | 33 | anbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) ) |
| 35 | 34 | opabbidv | ⊢ ( 𝑤 = 𝐴 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 36 | df-shft | ⊢ shift = ( 𝑧 ∈ V , 𝑤 ∈ ℂ ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝑧 𝑦 ) } ) | |
| 37 | 31 35 36 | ovmpog | ⊢ ( ( 𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 38 | 1 37 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
| 39 | 28 38 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |