This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality and domain of a sequence shifted by A . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftfn | |- ( ( F Fn B /\ A e. CC ) -> ( F shift A ) Fn { x e. CC | ( x - A ) e. B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | relopabv | |- Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } |
|
| 3 | 2 | a1i | |- ( ( F Fn B /\ A e. CC ) -> Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
| 4 | fnfun | |- ( F Fn B -> Fun F ) |
|
| 5 | 4 | adantr | |- ( ( F Fn B /\ A e. CC ) -> Fun F ) |
| 6 | funmo | |- ( Fun F -> E* w ( z - A ) F w ) |
|
| 7 | vex | |- z e. _V |
|
| 8 | vex | |- w e. _V |
|
| 9 | eleq1w | |- ( x = z -> ( x e. CC <-> z e. CC ) ) |
|
| 10 | oveq1 | |- ( x = z -> ( x - A ) = ( z - A ) ) |
|
| 11 | 10 | breq1d | |- ( x = z -> ( ( x - A ) F y <-> ( z - A ) F y ) ) |
| 12 | 9 11 | anbi12d | |- ( x = z -> ( ( x e. CC /\ ( x - A ) F y ) <-> ( z e. CC /\ ( z - A ) F y ) ) ) |
| 13 | breq2 | |- ( y = w -> ( ( z - A ) F y <-> ( z - A ) F w ) ) |
|
| 14 | 13 | anbi2d | |- ( y = w -> ( ( z e. CC /\ ( z - A ) F y ) <-> ( z e. CC /\ ( z - A ) F w ) ) ) |
| 15 | eqid | |- { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } |
|
| 16 | 7 8 12 14 15 | brab | |- ( z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w <-> ( z e. CC /\ ( z - A ) F w ) ) |
| 17 | 16 | simprbi | |- ( z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w -> ( z - A ) F w ) |
| 18 | 17 | moimi | |- ( E* w ( z - A ) F w -> E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
| 19 | 6 18 | syl | |- ( Fun F -> E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
| 20 | 19 | alrimiv | |- ( Fun F -> A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
| 21 | 5 20 | syl | |- ( ( F Fn B /\ A e. CC ) -> A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
| 22 | dffun6 | |- ( Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } <-> ( Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } /\ A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) ) |
|
| 23 | 3 21 22 | sylanbrc | |- ( ( F Fn B /\ A e. CC ) -> Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
| 24 | 1 | shftfval | |- ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
| 25 | 24 | adantl | |- ( ( F Fn B /\ A e. CC ) -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
| 26 | 25 | funeqd | |- ( ( F Fn B /\ A e. CC ) -> ( Fun ( F shift A ) <-> Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) ) |
| 27 | 23 26 | mpbird | |- ( ( F Fn B /\ A e. CC ) -> Fun ( F shift A ) ) |
| 28 | 1 | shftdm | |- ( A e. CC -> dom ( F shift A ) = { x e. CC | ( x - A ) e. dom F } ) |
| 29 | fndm | |- ( F Fn B -> dom F = B ) |
|
| 30 | 29 | eleq2d | |- ( F Fn B -> ( ( x - A ) e. dom F <-> ( x - A ) e. B ) ) |
| 31 | 30 | rabbidv | |- ( F Fn B -> { x e. CC | ( x - A ) e. dom F } = { x e. CC | ( x - A ) e. B } ) |
| 32 | 28 31 | sylan9eqr | |- ( ( F Fn B /\ A e. CC ) -> dom ( F shift A ) = { x e. CC | ( x - A ) e. B } ) |
| 33 | df-fn | |- ( ( F shift A ) Fn { x e. CC | ( x - A ) e. B } <-> ( Fun ( F shift A ) /\ dom ( F shift A ) = { x e. CC | ( x - A ) e. B } ) ) |
|
| 34 | 27 32 33 | sylanbrc | |- ( ( F Fn B /\ A e. CC ) -> ( F shift A ) Fn { x e. CC | ( x - A ) e. B } ) |