This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998) (Proof shortened by SN, 19-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funmo | ⊢ ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | |
| 2 | 1 | simplbi | ⊢ ( Fun 𝐹 → Rel 𝐹 ) |
| 3 | brrelex1 | ⊢ ( ( Rel 𝐹 ∧ 𝐴 𝐹 𝑦 ) → 𝐴 ∈ V ) | |
| 4 | 3 | ex | ⊢ ( Rel 𝐹 → ( 𝐴 𝐹 𝑦 → 𝐴 ∈ V ) ) |
| 5 | 2 4 | syl | ⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝑦 → 𝐴 ∈ V ) ) |
| 6 | 5 | ancrd | ⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) ) |
| 7 | 6 | alrimiv | ⊢ ( Fun 𝐹 → ∀ 𝑦 ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) ) |
| 8 | 1 | simprbi | ⊢ ( Fun 𝐹 → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 9 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) | |
| 10 | 9 | mobidv | ⊢ ( 𝑥 = 𝐴 → ( ∃* 𝑦 𝑥 𝐹 𝑦 ↔ ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 11 | 10 | spcgv | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 12 | 8 11 | syl5com | ⊢ ( Fun 𝐹 → ( 𝐴 ∈ V → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) |
| 13 | moanimv | ⊢ ( ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ↔ ( 𝐴 ∈ V → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( Fun 𝐹 → ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) |
| 15 | moim | ⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 → ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) ) → ( ∃* 𝑦 ( 𝐴 ∈ V ∧ 𝐴 𝐹 𝑦 ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) ) | |
| 16 | 7 14 15 | sylc | ⊢ ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) |