This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimuni.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| rlimuni.2 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | ||
| rlimuni.3 | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐵 ) | ||
| rlimuni.4 | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐶 ) | ||
| Assertion | rlimuni | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimuni.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | rlimuni.2 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 3 | rlimuni.3 | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐵 ) | |
| 4 | rlimuni.4 | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐶 ) | |
| 5 | rlimcl | ⊢ ( 𝐹 ⇝𝑟 𝐵 → 𝐵 ∈ ℂ ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 | rlimcl | ⊢ ( 𝐹 ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 11 | 7 10 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 12 | 11 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) |
| 13 | 12 | ltnrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ¬ ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 14 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 15 | 14 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 | 15 7 | abssubd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) = ( abs ‘ ( 𝐵 − ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 17 | 16 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ↔ ( abs ‘ ( 𝐵 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) |
| 18 | 17 | anbi1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ↔ ( ( abs ‘ ( 𝐵 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) |
| 19 | abs3lem | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐵 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) | |
| 20 | 7 10 15 12 19 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( ( ( abs ‘ ( 𝐵 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 21 | 18 20 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 22 | 21 | imim2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) ) |
| 23 | 22 | impcomd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑗 ≤ 𝑘 ∧ ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 24 | 13 23 | mtod | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ 𝐴 ) → ¬ ( 𝑗 ≤ 𝑘 ∧ ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) |
| 25 | 24 | nrexdv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ¬ ∃ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 ∧ ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) |
| 26 | r19.29r | ⊢ ( ( ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) → ∃ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 ∧ ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) | |
| 27 | 25 26 | nsyl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ¬ ( ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) |
| 28 | 27 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑗 ∈ ℝ ( ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) |
| 29 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 30 | rlimss | ⊢ ( 𝐹 ⇝𝑟 𝐵 → dom 𝐹 ⊆ ℝ ) | |
| 31 | 3 30 | syl | ⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
| 32 | 29 31 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 33 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 34 | 32 33 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 35 | supxrunb1 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑗 ∈ ℝ ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ℝ ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 37 | 2 36 | mpbird | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℝ ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ) |
| 38 | r19.29 | ⊢ ( ( ∀ 𝑗 ∈ ℝ ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) → ∃ 𝑗 ∈ ℝ ( ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) | |
| 39 | 38 | ex | ⊢ ( ∀ 𝑗 ∈ ℝ ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) → ∃ 𝑗 ∈ ℝ ( ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) ) |
| 40 | 37 39 | syl | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) → ∃ 𝑗 ∈ ℝ ( ∃ 𝑘 ∈ 𝐴 𝑗 ≤ 𝑘 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) ) |
| 41 | 28 40 | mtod | ⊢ ( 𝜑 → ¬ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) |
| 42 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 43 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 44 | 43 | ralrimiva | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 45 | 42 44 | syl | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 46 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ℂ ) |
| 47 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 48 | 46 47 | subcld | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) | |
| 50 | 46 47 49 | subne0d | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐶 ) ≠ 0 ) |
| 51 | 48 50 | absrpcld | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ+ ) |
| 52 | 51 | rphalfcld | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∈ ℝ+ ) |
| 53 | 42 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 54 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ⇝𝑟 𝐵 ) |
| 55 | 53 54 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐵 ) |
| 56 | 45 52 55 | rlimi | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) |
| 57 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ⇝𝑟 𝐶 ) |
| 58 | 53 57 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐶 ) |
| 59 | 45 52 58 | rlimi | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) |
| 60 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ⊆ ℝ ) |
| 61 | rexanre | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ↔ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) | |
| 62 | 60 61 | syl | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ↔ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) |
| 63 | 56 59 62 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) |
| 64 | 63 | ex | ⊢ ( 𝜑 → ( 𝐵 ≠ 𝐶 → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) ) ) |
| 65 | 64 | necon1bd | ⊢ ( 𝜑 → ( ¬ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐶 ) ) < ( ( abs ‘ ( 𝐵 − 𝐶 ) ) / 2 ) ) ) → 𝐵 = 𝐶 ) ) |
| 66 | 41 65 | mpd | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) |