This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexanre | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ↔ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 2 | 1 | imim2i | ⊢ ( ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) → ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 3 | 2 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 4 | 3 | reximi | ⊢ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 6 | 5 | imim2i | ⊢ ( ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) → ( 𝑗 ≤ 𝑘 → 𝜓 ) ) |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) |
| 8 | 7 | reximi | ⊢ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) |
| 9 | 4 8 | jca | ⊢ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) ) |
| 10 | breq1 | ⊢ ( 𝑗 = 𝑥 → ( 𝑗 ≤ 𝑘 ↔ 𝑥 ≤ 𝑘 ) ) | |
| 11 | 10 | imbi1d | ⊢ ( 𝑗 = 𝑥 → ( ( 𝑗 ≤ 𝑘 → 𝜑 ) ↔ ( 𝑥 ≤ 𝑘 → 𝜑 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑗 = 𝑥 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ) ) |
| 13 | 12 | cbvrexvw | ⊢ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ) |
| 14 | breq1 | ⊢ ( 𝑗 = 𝑦 → ( 𝑗 ≤ 𝑘 ↔ 𝑦 ≤ 𝑘 ) ) | |
| 15 | 14 | imbi1d | ⊢ ( 𝑗 = 𝑦 → ( ( 𝑗 ≤ 𝑘 → 𝜓 ) ↔ ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑗 = 𝑦 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ) |
| 17 | 16 | cbvrexvw | ⊢ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) |
| 18 | 13 17 | anbi12i | ⊢ ( ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ) |
| 19 | reeanv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ) | |
| 20 | 18 19 | bitr4i | ⊢ ( ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ) |
| 21 | ifcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℝ ) | |
| 22 | 21 | ancoms | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℝ ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℝ ) |
| 24 | r19.26 | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ↔ ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) ) | |
| 25 | anim12 | ⊢ ( ( ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ( 𝑦 ≤ 𝑘 → 𝜓 ) ) → ( ( 𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘 ) → ( 𝜑 ∧ 𝜓 ) ) ) | |
| 26 | simplrl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 27 | simplrr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 28 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) | |
| 29 | 28 | sselda | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℝ ) |
| 30 | maxle | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 ↔ ( 𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘 ) ) ) | |
| 31 | 26 27 29 30 | syl3anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 ↔ ( 𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘 ) ) ) |
| 32 | 31 | imbi1d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘 ) → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 33 | 25 32 | imbitrrid | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ( 𝑦 ≤ 𝑘 → 𝜓 ) ) → ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 34 | 33 | ralimdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ( 𝑦 ≤ 𝑘 → 𝜓 ) ) → ∀ 𝑘 ∈ 𝐴 ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 35 | 24 34 | biimtrrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) → ∀ 𝑘 ∈ 𝐴 ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 36 | breq1 | ⊢ ( 𝑗 = if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) → ( 𝑗 ≤ 𝑘 ↔ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 ) ) | |
| 37 | 36 | rspceaimv | ⊢ ( ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 38 | 23 35 37 | syl6an | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 39 | 38 | rexlimdvva | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ≤ 𝑘 → 𝜑 ) ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ≤ 𝑘 → 𝜓 ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 40 | 20 39 | biimtrid | ⊢ ( 𝐴 ⊆ ℝ → ( ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 41 | 9 40 | impbid2 | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( 𝜑 ∧ 𝜓 ) ) ↔ ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜑 ) ∧ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → 𝜓 ) ) ) ) |