This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimi.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ) | |
| rlimi.2 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| rlimi.3 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| Assertion | rlimi | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimi.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ) | |
| 2 | rlimi.2 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 3 | rlimi.3 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 4 | breq2 | ⊢ ( 𝑥 = 𝑅 → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) | |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 𝑅 → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) |
| 6 | 5 | rexralbidv | ⊢ ( 𝑥 = 𝑅 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) |
| 7 | rlimf | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) |
| 9 | eqid | ⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) | |
| 10 | 9 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑉 ) |
| 11 | 1 10 | sylib | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑉 ) |
| 12 | 11 | fdmd | ⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 13 | 12 | feq2d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) ) |
| 14 | 8 13 | mpbid | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 15 | 9 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 16 | 14 15 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 17 | rlimss | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 19 | 12 18 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 20 | rlimcl | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) | |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 22 | 16 19 21 | rlim2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 23 | 3 22 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
| 24 | 6 23 2 | rspcdva | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |