This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that a function has a limit. (The expression ( ~>rF ) is sometimes useful as a shorthand for "the unique limit of the function F "). (Contributed by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimuni.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| rlimuni.2 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | ||
| Assertion | rlimdm | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimuni.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | rlimuni.2 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 3 | eldmg | ⊢ ( 𝐹 ∈ dom ⇝𝑟 → ( 𝐹 ∈ dom ⇝𝑟 ↔ ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) ) | |
| 4 | 3 | ibi | ⊢ ( 𝐹 ∈ dom ⇝𝑟 → ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 𝑥 ) | |
| 6 | df-fv | ⊢ ( ⇝𝑟 ‘ 𝐹 ) = ( ℩ 𝑦 𝐹 ⇝𝑟 𝑦 ) | |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝐹 ⇝𝑟 𝑦 ) | |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝐹 ⇝𝑟 𝑥 ) | |
| 11 | 7 8 9 10 | rlimuni | ⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦 ) ) → 𝑦 = 𝑥 ) |
| 12 | 11 | expr | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑦 → 𝑦 = 𝑥 ) ) |
| 13 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥 ) ) | |
| 14 | 5 13 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝑦 = 𝑥 → 𝐹 ⇝𝑟 𝑦 ) ) |
| 15 | 12 14 | impbid | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥 ) ) |
| 17 | 16 | iota5 | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( ℩ 𝑦 𝐹 ⇝𝑟 𝑦 ) = 𝑥 ) |
| 18 | 17 | elvd | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ℩ 𝑦 𝐹 ⇝𝑟 𝑦 ) = 𝑥 ) |
| 19 | 6 18 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ⇝𝑟 ‘ 𝐹 ) = 𝑥 ) |
| 20 | 5 19 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) |
| 21 | 20 | ex | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |
| 22 | 21 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |
| 23 | 4 22 | syl5 | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |
| 24 | rlimrel | ⊢ Rel ⇝𝑟 | |
| 25 | 24 | releldmi | ⊢ ( 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) → 𝐹 ∈ dom ⇝𝑟 ) |
| 26 | 23 25 | impbid1 | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘ 𝐹 ) ) ) |