This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimuni.1 | |- ( ph -> F : A --> CC ) |
|
| rlimuni.2 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
||
| rlimuni.3 | |- ( ph -> F ~~>r B ) |
||
| rlimuni.4 | |- ( ph -> F ~~>r C ) |
||
| Assertion | rlimuni | |- ( ph -> B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimuni.1 | |- ( ph -> F : A --> CC ) |
|
| 2 | rlimuni.2 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| 3 | rlimuni.3 | |- ( ph -> F ~~>r B ) |
|
| 4 | rlimuni.4 | |- ( ph -> F ~~>r C ) |
|
| 5 | rlimcl | |- ( F ~~>r B -> B e. CC ) |
|
| 6 | 3 5 | syl | |- ( ph -> B e. CC ) |
| 7 | 6 | ad2antrr | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> B e. CC ) |
| 8 | rlimcl | |- ( F ~~>r C -> C e. CC ) |
|
| 9 | 4 8 | syl | |- ( ph -> C e. CC ) |
| 10 | 9 | ad2antrr | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> C e. CC ) |
| 11 | 7 10 | subcld | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( B - C ) e. CC ) |
| 12 | 11 | abscld | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( abs ` ( B - C ) ) e. RR ) |
| 13 | 12 | ltnrd | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> -. ( abs ` ( B - C ) ) < ( abs ` ( B - C ) ) ) |
| 14 | 1 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( F ` k ) e. CC ) |
| 15 | 14 | adantlr | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( F ` k ) e. CC ) |
| 16 | 15 7 | abssubd | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( abs ` ( ( F ` k ) - B ) ) = ( abs ` ( B - ( F ` k ) ) ) ) |
| 17 | 16 | breq1d | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) <-> ( abs ` ( B - ( F ` k ) ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) |
| 18 | 17 | anbi1d | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) <-> ( ( abs ` ( B - ( F ` k ) ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) |
| 19 | abs3lem | |- ( ( ( B e. CC /\ C e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( B - C ) ) e. RR ) ) -> ( ( ( abs ` ( B - ( F ` k ) ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) -> ( abs ` ( B - C ) ) < ( abs ` ( B - C ) ) ) ) |
|
| 20 | 7 10 15 12 19 | syl22anc | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( ( ( abs ` ( B - ( F ` k ) ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) -> ( abs ` ( B - C ) ) < ( abs ` ( B - C ) ) ) ) |
| 21 | 18 20 | sylbid | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) -> ( abs ` ( B - C ) ) < ( abs ` ( B - C ) ) ) ) |
| 22 | 21 | imim2d | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) -> ( j <_ k -> ( abs ` ( B - C ) ) < ( abs ` ( B - C ) ) ) ) ) |
| 23 | 22 | impcomd | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> ( ( j <_ k /\ ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) -> ( abs ` ( B - C ) ) < ( abs ` ( B - C ) ) ) ) |
| 24 | 13 23 | mtod | |- ( ( ( ph /\ j e. RR ) /\ k e. A ) -> -. ( j <_ k /\ ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
| 25 | 24 | nrexdv | |- ( ( ph /\ j e. RR ) -> -. E. k e. A ( j <_ k /\ ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
| 26 | r19.29r | |- ( ( E. k e. A j <_ k /\ A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) -> E. k e. A ( j <_ k /\ ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
|
| 27 | 25 26 | nsyl | |- ( ( ph /\ j e. RR ) -> -. ( E. k e. A j <_ k /\ A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
| 28 | 27 | nrexdv | |- ( ph -> -. E. j e. RR ( E. k e. A j <_ k /\ A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
| 29 | 1 | fdmd | |- ( ph -> dom F = A ) |
| 30 | rlimss | |- ( F ~~>r B -> dom F C_ RR ) |
|
| 31 | 3 30 | syl | |- ( ph -> dom F C_ RR ) |
| 32 | 29 31 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 33 | ressxr | |- RR C_ RR* |
|
| 34 | 32 33 | sstrdi | |- ( ph -> A C_ RR* ) |
| 35 | supxrunb1 | |- ( A C_ RR* -> ( A. j e. RR E. k e. A j <_ k <-> sup ( A , RR* , < ) = +oo ) ) |
|
| 36 | 34 35 | syl | |- ( ph -> ( A. j e. RR E. k e. A j <_ k <-> sup ( A , RR* , < ) = +oo ) ) |
| 37 | 2 36 | mpbird | |- ( ph -> A. j e. RR E. k e. A j <_ k ) |
| 38 | r19.29 | |- ( ( A. j e. RR E. k e. A j <_ k /\ E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) -> E. j e. RR ( E. k e. A j <_ k /\ A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
|
| 39 | 38 | ex | |- ( A. j e. RR E. k e. A j <_ k -> ( E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) -> E. j e. RR ( E. k e. A j <_ k /\ A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) ) |
| 40 | 37 39 | syl | |- ( ph -> ( E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) -> E. j e. RR ( E. k e. A j <_ k /\ A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) ) |
| 41 | 28 40 | mtod | |- ( ph -> -. E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) |
| 42 | 1 | adantr | |- ( ( ph /\ B =/= C ) -> F : A --> CC ) |
| 43 | ffvelcdm | |- ( ( F : A --> CC /\ k e. A ) -> ( F ` k ) e. CC ) |
|
| 44 | 43 | ralrimiva | |- ( F : A --> CC -> A. k e. A ( F ` k ) e. CC ) |
| 45 | 42 44 | syl | |- ( ( ph /\ B =/= C ) -> A. k e. A ( F ` k ) e. CC ) |
| 46 | 6 | adantr | |- ( ( ph /\ B =/= C ) -> B e. CC ) |
| 47 | 9 | adantr | |- ( ( ph /\ B =/= C ) -> C e. CC ) |
| 48 | 46 47 | subcld | |- ( ( ph /\ B =/= C ) -> ( B - C ) e. CC ) |
| 49 | simpr | |- ( ( ph /\ B =/= C ) -> B =/= C ) |
|
| 50 | 46 47 49 | subne0d | |- ( ( ph /\ B =/= C ) -> ( B - C ) =/= 0 ) |
| 51 | 48 50 | absrpcld | |- ( ( ph /\ B =/= C ) -> ( abs ` ( B - C ) ) e. RR+ ) |
| 52 | 51 | rphalfcld | |- ( ( ph /\ B =/= C ) -> ( ( abs ` ( B - C ) ) / 2 ) e. RR+ ) |
| 53 | 42 | feqmptd | |- ( ( ph /\ B =/= C ) -> F = ( k e. A |-> ( F ` k ) ) ) |
| 54 | 3 | adantr | |- ( ( ph /\ B =/= C ) -> F ~~>r B ) |
| 55 | 53 54 | eqbrtrrd | |- ( ( ph /\ B =/= C ) -> ( k e. A |-> ( F ` k ) ) ~~>r B ) |
| 56 | 45 52 55 | rlimi | |- ( ( ph /\ B =/= C ) -> E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) |
| 57 | 4 | adantr | |- ( ( ph /\ B =/= C ) -> F ~~>r C ) |
| 58 | 53 57 | eqbrtrrd | |- ( ( ph /\ B =/= C ) -> ( k e. A |-> ( F ` k ) ) ~~>r C ) |
| 59 | 45 52 58 | rlimi | |- ( ( ph /\ B =/= C ) -> E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) |
| 60 | 32 | adantr | |- ( ( ph /\ B =/= C ) -> A C_ RR ) |
| 61 | rexanre | |- ( A C_ RR -> ( E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) <-> ( E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) /\ E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
|
| 62 | 60 61 | syl | |- ( ( ph /\ B =/= C ) -> ( E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) <-> ( E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) /\ E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
| 63 | 56 59 62 | mpbir2and | |- ( ( ph /\ B =/= C ) -> E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) |
| 64 | 63 | ex | |- ( ph -> ( B =/= C -> E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) ) ) |
| 65 | 64 | necon1bd | |- ( ph -> ( -. E. j e. RR A. k e. A ( j <_ k -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( B - C ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - C ) ) < ( ( abs ` ( B - C ) ) / 2 ) ) ) -> B = C ) ) |
| 66 | 41 65 | mpd | |- ( ph -> B = C ) |