This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrunb1 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℝ* ) ) | |
| 2 | pnfnlt | ⊢ ( 𝑧 ∈ ℝ* → ¬ +∞ < 𝑧 ) | |
| 3 | 1 2 | syl6 | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝑧 ∈ 𝐴 → ¬ +∞ < 𝑧 ) ) |
| 4 | 3 | ralrimiv | ⊢ ( 𝐴 ⊆ ℝ* → ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ) |
| 6 | peano2re | ⊢ ( 𝑧 ∈ ℝ → ( 𝑧 + 1 ) ∈ ℝ ) | |
| 7 | breq1 | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑧 + 1 ) ≤ 𝑦 ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) ) |
| 9 | 8 | rspcva | ⊢ ( ( ( 𝑧 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
| 10 | 9 | adantrr | ⊢ ( ( ( 𝑧 + 1 ) ∈ ℝ ∧ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
| 11 | 10 | ancoms | ⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ ( 𝑧 + 1 ) ∈ ℝ ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
| 12 | 6 11 | sylan2 | ⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
| 13 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) | |
| 14 | ltp1 | ⊢ ( 𝑧 ∈ ℝ → 𝑧 < ( 𝑧 + 1 ) ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → 𝑧 < ( 𝑧 + 1 ) ) |
| 16 | 6 | ancli | ⊢ ( 𝑧 ∈ ℝ → ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ) ) |
| 17 | rexr | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℝ* ) | |
| 18 | rexr | ⊢ ( ( 𝑧 + 1 ) ∈ ℝ → ( 𝑧 + 1 ) ∈ ℝ* ) | |
| 19 | xrltletr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝑧 + 1 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) | |
| 20 | 18 19 | syl3an2 | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝑧 + 1 ) ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
| 21 | 17 20 | syl3an1 | ⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
| 22 | 21 | 3expa | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
| 23 | 16 22 | sylan | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
| 24 | 15 23 | mpand | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
| 25 | 24 | ancoms | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
| 26 | 13 25 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
| 27 | 26 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
| 28 | 27 | reximdva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 29 | 28 | adantll | ⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 30 | 12 29 | mpd | ⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) |
| 31 | 30 | exp31 | ⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 ∈ ℝ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 32 | 31 | a1dd | ⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 < +∞ → ( 𝑧 ∈ ℝ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 33 | 32 | com4r | ⊢ ( 𝑧 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 34 | 33 | com13 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝑧 ∈ ℝ → ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 35 | 34 | imp | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 ∈ ℝ → ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 36 | 35 | ralrimiv | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 37 | 5 36 | jca | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 38 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 39 | supxr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 40 | 38 39 | mpanl2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 41 | 37 40 | syldan | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 42 | 41 | ex | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 43 | rexr | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) | |
| 44 | 43 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 ∈ ℝ* ) |
| 45 | ltpnf | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) | |
| 46 | breq2 | ⊢ ( sup ( 𝐴 , ℝ* , < ) = +∞ → ( 𝑥 < sup ( 𝐴 , ℝ* , < ) ↔ 𝑥 < +∞ ) ) | |
| 47 | 45 46 | imbitrrid | ⊢ ( sup ( 𝐴 , ℝ* , < ) = +∞ → ( 𝑥 ∈ ℝ → 𝑥 < sup ( 𝐴 , ℝ* , < ) ) ) |
| 48 | 47 | impcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 < sup ( 𝐴 , ℝ* , < ) ) |
| 49 | 48 | adantll | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 < sup ( 𝐴 , ℝ* , < ) ) |
| 50 | xrltso | ⊢ < Or ℝ* | |
| 51 | 50 | a1i | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → < Or ℝ* ) |
| 52 | xrsupss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑤 < 𝑧 → ∃ 𝑦 ∈ 𝐴 𝑤 < 𝑦 ) ) ) | |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑤 < 𝑧 → ∃ 𝑦 ∈ 𝐴 𝑤 < 𝑦 ) ) ) |
| 54 | 51 53 | suplub | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( ( 𝑥 ∈ ℝ* ∧ 𝑥 < sup ( 𝐴 , ℝ* , < ) ) → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
| 55 | 44 49 54 | mp2and | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) |
| 56 | 55 | ex | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
| 57 | 43 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 58 | 13 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 59 | xrltle | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 → 𝑥 ≤ 𝑦 ) ) | |
| 60 | 57 58 59 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝑥 ≤ 𝑦 ) ) |
| 61 | 60 | reximdva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 62 | 56 61 | syld | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 63 | 62 | ralrimdva | ⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 64 | 42 63 | impbid | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |