This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimno1.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| rlimno1.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 ) | ||
| rlimno1.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| rlimno1.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) | ||
| Assertion | rlimno1 | ⊢ ( 𝜑 → ¬ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimno1.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 2 | rlimno1.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 ) | |
| 3 | rlimno1.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | rlimno1.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) | |
| 5 | fal | ⊢ ¬ ⊥ | |
| 6 | 3 4 | reccld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | ifcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
| 13 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 14 | 13 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ+ ) |
| 15 | max1 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) | |
| 16 | 10 9 15 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 17 | 12 14 16 | rpgecld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ+ ) |
| 18 | 17 | rpreccld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∈ ℝ+ ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 ) |
| 20 | 8 18 19 | rlimi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ) |
| 21 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 1 / 𝐵 ) ∈ ℂ → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) = 𝐴 ) | |
| 22 | 7 21 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) = 𝐴 ) |
| 23 | rlimss | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⇝𝑟 0 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⊆ ℝ ) | |
| 24 | 2 23 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) ⊆ ℝ ) |
| 25 | 22 24 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
| 27 | rexanre | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) |
| 29 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 30 | 25 29 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 31 | supxrunb1 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 33 | 1 32 | mpbird | ⊢ ( 𝜑 → ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ) |
| 35 | r19.29 | ⊢ ( ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ∃ 𝑐 ∈ ℝ ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) | |
| 36 | r19.29r | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) ) | |
| 37 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 39 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 40 | 39 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝐵 ≠ 0 ) |
| 41 | 38 40 | reccld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 42 | 41 | subid1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( 1 / 𝐵 ) − 0 ) = ( 1 / 𝐵 ) ) |
| 43 | 42 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) = ( abs ‘ ( 1 / 𝐵 ) ) ) |
| 44 | 1cnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 1 ∈ ℂ ) | |
| 45 | 44 38 40 | absdivd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( 1 / 𝐵 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐵 ) ) ) |
| 46 | 10 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 1 ∈ ℝ ) |
| 47 | 0le1 | ⊢ 0 ≤ 1 | |
| 48 | 47 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 0 ≤ 1 ) |
| 49 | 46 48 | absidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 1 ) = 1 ) |
| 50 | 49 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( abs ‘ 1 ) / ( abs ‘ 𝐵 ) ) = ( 1 / ( abs ‘ 𝐵 ) ) ) |
| 51 | 43 45 50 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) = ( 1 / ( abs ‘ 𝐵 ) ) ) |
| 52 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ+ ) |
| 53 | 52 | rprecred | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∈ ℝ ) |
| 54 | 37 39 | absrpcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
| 55 | 54 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
| 56 | 55 | rprecred | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / ( abs ‘ 𝐵 ) ) ∈ ℝ ) |
| 57 | 55 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 58 | 9 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
| 59 | 12 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ∈ ℝ ) |
| 60 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ≤ 𝑦 ) | |
| 61 | max2 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) | |
| 62 | 10 58 61 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → 𝑦 ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 63 | 57 58 59 60 62 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( abs ‘ 𝐵 ) ≤ if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) |
| 64 | 55 52 46 48 63 | lediv2ad | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ≤ ( 1 / ( abs ‘ 𝐵 ) ) ) |
| 65 | 53 56 64 | lensymd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ¬ ( 1 / ( abs ‘ 𝐵 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) |
| 66 | 51 65 | eqnbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ¬ ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) |
| 67 | 66 | pm2.21d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) → ⊥ ) ) |
| 68 | 67 | expimpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( abs ‘ 𝐵 ) ≤ 𝑦 ∧ ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) → ⊥ ) ) |
| 69 | 68 | ancomsd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ⊥ ) ) |
| 70 | 69 | imim2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ( 𝑐 ≤ 𝑥 → ⊥ ) ) ) |
| 71 | 70 | impcomd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 72 | 71 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 ∧ ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 73 | 36 72 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 74 | 73 | rexlimdvw | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ( ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 75 | 35 74 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∀ 𝑐 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑐 ≤ 𝑥 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) → ⊥ ) ) |
| 76 | 34 75 | mpand | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ∧ ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ⊥ ) ) |
| 77 | 28 76 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ ( ( 1 / 𝐵 ) − 0 ) ) < ( 1 / if ( 1 ≤ 𝑦 , 𝑦 , 1 ) ) ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) → ⊥ ) ) |
| 78 | 20 77 | mpand | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) → ⊥ ) ) |
| 79 | 5 78 | mtoi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ¬ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 80 | 79 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 81 | 25 3 | elo1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 82 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) | |
| 83 | 81 82 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 84 | 80 83 | mtbird | ⊢ ( 𝜑 → ¬ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |