This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpgecld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| rpgecld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| rpgecld.3 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) | ||
| Assertion | rpgecld | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | rpgecld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | rpgecld.3 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) | |
| 4 | rpgecl | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) | |
| 5 | 2 1 3 4 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |