This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that RR is well-orderable (so we cannot use infxpidm2 directly). (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexpen | ⊢ ( ℝ × ℝ ) ≈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen | ⊢ ℝ ≈ 𝒫 ℕ | |
| 2 | nnenom | ⊢ ℕ ≈ ω | |
| 3 | pwen | ⊢ ( ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω ) | |
| 4 | 2 3 | ax-mp | ⊢ 𝒫 ℕ ≈ 𝒫 ω |
| 5 | 1 4 | entri | ⊢ ℝ ≈ 𝒫 ω |
| 6 | omex | ⊢ ω ∈ V | |
| 7 | 6 | pw2en | ⊢ 𝒫 ω ≈ ( 2o ↑m ω ) |
| 8 | 5 7 | entri | ⊢ ℝ ≈ ( 2o ↑m ω ) |
| 9 | xpen | ⊢ ( ( ℝ ≈ ( 2o ↑m ω ) ∧ ℝ ≈ ( 2o ↑m ω ) ) → ( ℝ × ℝ ) ≈ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) | |
| 10 | 8 8 9 | mp2an | ⊢ ( ℝ × ℝ ) ≈ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
| 11 | 2onn | ⊢ 2o ∈ ω | |
| 12 | 11 | elexi | ⊢ 2o ∈ V |
| 13 | 12 12 6 | xpmapen | ⊢ ( ( 2o × 2o ) ↑m ω ) ≈ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
| 14 | 13 | ensymi | ⊢ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( ( 2o × 2o ) ↑m ω ) |
| 15 | ssid | ⊢ 2o ⊆ 2o | |
| 16 | ssnnfi | ⊢ ( ( 2o ∈ ω ∧ 2o ⊆ 2o ) → 2o ∈ Fin ) | |
| 17 | 11 15 16 | mp2an | ⊢ 2o ∈ Fin |
| 18 | xpfi | ⊢ ( ( 2o ∈ Fin ∧ 2o ∈ Fin ) → ( 2o × 2o ) ∈ Fin ) | |
| 19 | 17 17 18 | mp2an | ⊢ ( 2o × 2o ) ∈ Fin |
| 20 | isfinite | ⊢ ( ( 2o × 2o ) ∈ Fin ↔ ( 2o × 2o ) ≺ ω ) | |
| 21 | 19 20 | mpbi | ⊢ ( 2o × 2o ) ≺ ω |
| 22 | 6 | canth2 | ⊢ ω ≺ 𝒫 ω |
| 23 | sdomtr | ⊢ ( ( ( 2o × 2o ) ≺ ω ∧ ω ≺ 𝒫 ω ) → ( 2o × 2o ) ≺ 𝒫 ω ) | |
| 24 | 21 22 23 | mp2an | ⊢ ( 2o × 2o ) ≺ 𝒫 ω |
| 25 | sdomdom | ⊢ ( ( 2o × 2o ) ≺ 𝒫 ω → ( 2o × 2o ) ≼ 𝒫 ω ) | |
| 26 | 24 25 | ax-mp | ⊢ ( 2o × 2o ) ≼ 𝒫 ω |
| 27 | domentr | ⊢ ( ( ( 2o × 2o ) ≼ 𝒫 ω ∧ 𝒫 ω ≈ ( 2o ↑m ω ) ) → ( 2o × 2o ) ≼ ( 2o ↑m ω ) ) | |
| 28 | 26 7 27 | mp2an | ⊢ ( 2o × 2o ) ≼ ( 2o ↑m ω ) |
| 29 | mapdom1 | ⊢ ( ( 2o × 2o ) ≼ ( 2o ↑m ω ) → ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2o ↑m ω ) ↑m ω ) ) | |
| 30 | 28 29 | ax-mp | ⊢ ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2o ↑m ω ) ↑m ω ) |
| 31 | mapxpen | ⊢ ( ( 2o ∈ ω ∧ ω ∈ V ∧ ω ∈ V ) → ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ( ω × ω ) ) ) | |
| 32 | 11 6 6 31 | mp3an | ⊢ ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ( ω × ω ) ) |
| 33 | 12 | enref | ⊢ 2o ≈ 2o |
| 34 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 35 | mapen | ⊢ ( ( 2o ≈ 2o ∧ ( ω × ω ) ≈ ω ) → ( 2o ↑m ( ω × ω ) ) ≈ ( 2o ↑m ω ) ) | |
| 36 | 33 34 35 | mp2an | ⊢ ( 2o ↑m ( ω × ω ) ) ≈ ( 2o ↑m ω ) |
| 37 | 32 36 | entri | ⊢ ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ω ) |
| 38 | domentr | ⊢ ( ( ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2o ↑m ω ) ↑m ω ) ∧ ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ω ) ) → ( ( 2o × 2o ) ↑m ω ) ≼ ( 2o ↑m ω ) ) | |
| 39 | 30 37 38 | mp2an | ⊢ ( ( 2o × 2o ) ↑m ω ) ≼ ( 2o ↑m ω ) |
| 40 | endomtr | ⊢ ( ( ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( ( 2o × 2o ) ↑m ω ) ∧ ( ( 2o × 2o ) ↑m ω ) ≼ ( 2o ↑m ω ) ) → ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≼ ( 2o ↑m ω ) ) | |
| 41 | 14 39 40 | mp2an | ⊢ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≼ ( 2o ↑m ω ) |
| 42 | ovex | ⊢ ( 2o ↑m ω ) ∈ V | |
| 43 | 0ex | ⊢ ∅ ∈ V | |
| 44 | 42 43 | xpsnen | ⊢ ( ( 2o ↑m ω ) × { ∅ } ) ≈ ( 2o ↑m ω ) |
| 45 | 44 | ensymi | ⊢ ( 2o ↑m ω ) ≈ ( ( 2o ↑m ω ) × { ∅ } ) |
| 46 | snfi | ⊢ { ∅ } ∈ Fin | |
| 47 | isfinite | ⊢ ( { ∅ } ∈ Fin ↔ { ∅ } ≺ ω ) | |
| 48 | 46 47 | mpbi | ⊢ { ∅ } ≺ ω |
| 49 | sdomtr | ⊢ ( ( { ∅ } ≺ ω ∧ ω ≺ 𝒫 ω ) → { ∅ } ≺ 𝒫 ω ) | |
| 50 | 48 22 49 | mp2an | ⊢ { ∅ } ≺ 𝒫 ω |
| 51 | sdomdom | ⊢ ( { ∅ } ≺ 𝒫 ω → { ∅ } ≼ 𝒫 ω ) | |
| 52 | 50 51 | ax-mp | ⊢ { ∅ } ≼ 𝒫 ω |
| 53 | domentr | ⊢ ( ( { ∅ } ≼ 𝒫 ω ∧ 𝒫 ω ≈ ( 2o ↑m ω ) ) → { ∅ } ≼ ( 2o ↑m ω ) ) | |
| 54 | 52 7 53 | mp2an | ⊢ { ∅ } ≼ ( 2o ↑m ω ) |
| 55 | 42 | xpdom2 | ⊢ ( { ∅ } ≼ ( 2o ↑m ω ) → ( ( 2o ↑m ω ) × { ∅ } ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) |
| 56 | 54 55 | ax-mp | ⊢ ( ( 2o ↑m ω ) × { ∅ } ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
| 57 | endomtr | ⊢ ( ( ( 2o ↑m ω ) ≈ ( ( 2o ↑m ω ) × { ∅ } ) ∧ ( ( 2o ↑m ω ) × { ∅ } ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) → ( 2o ↑m ω ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) | |
| 58 | 45 56 57 | mp2an | ⊢ ( 2o ↑m ω ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
| 59 | sbth | ⊢ ( ( ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≼ ( 2o ↑m ω ) ∧ ( 2o ↑m ω ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) → ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( 2o ↑m ω ) ) | |
| 60 | 41 58 59 | mp2an | ⊢ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( 2o ↑m ω ) |
| 61 | 10 60 | entri | ⊢ ( ℝ × ℝ ) ≈ ( 2o ↑m ω ) |
| 62 | 61 8 | entr4i | ⊢ ( ℝ × ℝ ) ≈ ℝ |