This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that RR is well-orderable (so we cannot use infxpidm2 directly). (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexpen | |- ( RR X. RR ) ~~ RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen | |- RR ~~ ~P NN |
|
| 2 | nnenom | |- NN ~~ _om |
|
| 3 | pwen | |- ( NN ~~ _om -> ~P NN ~~ ~P _om ) |
|
| 4 | 2 3 | ax-mp | |- ~P NN ~~ ~P _om |
| 5 | 1 4 | entri | |- RR ~~ ~P _om |
| 6 | omex | |- _om e. _V |
|
| 7 | 6 | pw2en | |- ~P _om ~~ ( 2o ^m _om ) |
| 8 | 5 7 | entri | |- RR ~~ ( 2o ^m _om ) |
| 9 | xpen | |- ( ( RR ~~ ( 2o ^m _om ) /\ RR ~~ ( 2o ^m _om ) ) -> ( RR X. RR ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
|
| 10 | 8 8 9 | mp2an | |- ( RR X. RR ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 11 | 2onn | |- 2o e. _om |
|
| 12 | 11 | elexi | |- 2o e. _V |
| 13 | 12 12 6 | xpmapen | |- ( ( 2o X. 2o ) ^m _om ) ~~ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 14 | 13 | ensymi | |- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( ( 2o X. 2o ) ^m _om ) |
| 15 | ssid | |- 2o C_ 2o |
|
| 16 | ssnnfi | |- ( ( 2o e. _om /\ 2o C_ 2o ) -> 2o e. Fin ) |
|
| 17 | 11 15 16 | mp2an | |- 2o e. Fin |
| 18 | xpfi | |- ( ( 2o e. Fin /\ 2o e. Fin ) -> ( 2o X. 2o ) e. Fin ) |
|
| 19 | 17 17 18 | mp2an | |- ( 2o X. 2o ) e. Fin |
| 20 | isfinite | |- ( ( 2o X. 2o ) e. Fin <-> ( 2o X. 2o ) ~< _om ) |
|
| 21 | 19 20 | mpbi | |- ( 2o X. 2o ) ~< _om |
| 22 | 6 | canth2 | |- _om ~< ~P _om |
| 23 | sdomtr | |- ( ( ( 2o X. 2o ) ~< _om /\ _om ~< ~P _om ) -> ( 2o X. 2o ) ~< ~P _om ) |
|
| 24 | 21 22 23 | mp2an | |- ( 2o X. 2o ) ~< ~P _om |
| 25 | sdomdom | |- ( ( 2o X. 2o ) ~< ~P _om -> ( 2o X. 2o ) ~<_ ~P _om ) |
|
| 26 | 24 25 | ax-mp | |- ( 2o X. 2o ) ~<_ ~P _om |
| 27 | domentr | |- ( ( ( 2o X. 2o ) ~<_ ~P _om /\ ~P _om ~~ ( 2o ^m _om ) ) -> ( 2o X. 2o ) ~<_ ( 2o ^m _om ) ) |
|
| 28 | 26 7 27 | mp2an | |- ( 2o X. 2o ) ~<_ ( 2o ^m _om ) |
| 29 | mapdom1 | |- ( ( 2o X. 2o ) ~<_ ( 2o ^m _om ) -> ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) ) |
|
| 30 | 28 29 | ax-mp | |- ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) |
| 31 | mapxpen | |- ( ( 2o e. _om /\ _om e. _V /\ _om e. _V ) -> ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m ( _om X. _om ) ) ) |
|
| 32 | 11 6 6 31 | mp3an | |- ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m ( _om X. _om ) ) |
| 33 | 12 | enref | |- 2o ~~ 2o |
| 34 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 35 | mapen | |- ( ( 2o ~~ 2o /\ ( _om X. _om ) ~~ _om ) -> ( 2o ^m ( _om X. _om ) ) ~~ ( 2o ^m _om ) ) |
|
| 36 | 33 34 35 | mp2an | |- ( 2o ^m ( _om X. _om ) ) ~~ ( 2o ^m _om ) |
| 37 | 32 36 | entri | |- ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m _om ) |
| 38 | domentr | |- ( ( ( ( 2o X. 2o ) ^m _om ) ~<_ ( ( 2o ^m _om ) ^m _om ) /\ ( ( 2o ^m _om ) ^m _om ) ~~ ( 2o ^m _om ) ) -> ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) ) |
|
| 39 | 30 37 38 | mp2an | |- ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) |
| 40 | endomtr | |- ( ( ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( ( 2o X. 2o ) ^m _om ) /\ ( ( 2o X. 2o ) ^m _om ) ~<_ ( 2o ^m _om ) ) -> ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) ) |
|
| 41 | 14 39 40 | mp2an | |- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) |
| 42 | ovex | |- ( 2o ^m _om ) e. _V |
|
| 43 | 0ex | |- (/) e. _V |
|
| 44 | 42 43 | xpsnen | |- ( ( 2o ^m _om ) X. { (/) } ) ~~ ( 2o ^m _om ) |
| 45 | 44 | ensymi | |- ( 2o ^m _om ) ~~ ( ( 2o ^m _om ) X. { (/) } ) |
| 46 | snfi | |- { (/) } e. Fin |
|
| 47 | isfinite | |- ( { (/) } e. Fin <-> { (/) } ~< _om ) |
|
| 48 | 46 47 | mpbi | |- { (/) } ~< _om |
| 49 | sdomtr | |- ( ( { (/) } ~< _om /\ _om ~< ~P _om ) -> { (/) } ~< ~P _om ) |
|
| 50 | 48 22 49 | mp2an | |- { (/) } ~< ~P _om |
| 51 | sdomdom | |- ( { (/) } ~< ~P _om -> { (/) } ~<_ ~P _om ) |
|
| 52 | 50 51 | ax-mp | |- { (/) } ~<_ ~P _om |
| 53 | domentr | |- ( ( { (/) } ~<_ ~P _om /\ ~P _om ~~ ( 2o ^m _om ) ) -> { (/) } ~<_ ( 2o ^m _om ) ) |
|
| 54 | 52 7 53 | mp2an | |- { (/) } ~<_ ( 2o ^m _om ) |
| 55 | 42 | xpdom2 | |- ( { (/) } ~<_ ( 2o ^m _om ) -> ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
| 56 | 54 55 | ax-mp | |- ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 57 | endomtr | |- ( ( ( 2o ^m _om ) ~~ ( ( 2o ^m _om ) X. { (/) } ) /\ ( ( 2o ^m _om ) X. { (/) } ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) -> ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) |
|
| 58 | 45 56 57 | mp2an | |- ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) |
| 59 | sbth | |- ( ( ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~<_ ( 2o ^m _om ) /\ ( 2o ^m _om ) ~<_ ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ) -> ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( 2o ^m _om ) ) |
|
| 60 | 41 58 59 | mp2an | |- ( ( 2o ^m _om ) X. ( 2o ^m _om ) ) ~~ ( 2o ^m _om ) |
| 61 | 10 60 | entri | |- ( RR X. RR ) ~~ ( 2o ^m _om ) |
| 62 | 61 8 | entr4i | |- ( RR X. RR ) ~~ RR |