This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnnen | ⊢ ℂ ≈ 𝒫 ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexpen | ⊢ ( ℝ × ℝ ) ≈ ℝ | |
| 2 | eleq1w | ⊢ ( 𝑣 = 𝑥 → ( 𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ ) ) | |
| 3 | eleq1w | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ ) ) | |
| 4 | 2 3 | bi2anan9 | ⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑤 = 𝑦 → ( i · 𝑤 ) = ( i · 𝑦 ) ) | |
| 6 | oveq12 | ⊢ ( ( 𝑣 = 𝑥 ∧ ( i · 𝑤 ) = ( i · 𝑦 ) ) → ( 𝑣 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝑣 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 8 | 7 | eqeq2d | ⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ↔ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 9 | 4 8 | anbi12d | ⊢ ( ( 𝑣 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) ) ) |
| 10 | 9 | cbvoprab12v | ⊢ { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) } |
| 11 | df-mpo | ⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) } | |
| 12 | 10 11 | eqtr4i | ⊢ { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) |
| 13 | 12 | cnref1o | ⊢ { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } : ( ℝ × ℝ ) –1-1-onto→ ℂ |
| 14 | reex | ⊢ ℝ ∈ V | |
| 15 | 14 14 | xpex | ⊢ ( ℝ × ℝ ) ∈ V |
| 16 | 15 | f1oen | ⊢ ( { 〈 〈 𝑣 , 𝑤 〉 , 𝑧 〉 ∣ ( ( 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 = ( 𝑣 + ( i · 𝑤 ) ) ) } : ( ℝ × ℝ ) –1-1-onto→ ℂ → ( ℝ × ℝ ) ≈ ℂ ) |
| 17 | 13 16 | ax-mp | ⊢ ( ℝ × ℝ ) ≈ ℂ |
| 18 | 1 17 | entr3i | ⊢ ℝ ≈ ℂ |
| 19 | rpnnen | ⊢ ℝ ≈ 𝒫 ℕ | |
| 20 | 18 19 | entr3i | ⊢ ℂ ≈ 𝒫 ℕ |