This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( reverse ‘ 𝑊 ) ) = ( reverse ‘ ( 𝐹 ∘ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | ⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 3 | lencl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 4 | 3 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 5 | fzoval | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 8 | 7 | eleq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 10 | fznn0sub2 | ⊢ ( 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 12 | 7 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 13 | 11 12 | eleqtrrd | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 14 | fvco2 | ⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) | |
| 15 | 2 13 14 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| 16 | lenco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) |
| 20 | 19 | fveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) |
| 21 | revfv | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) | |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| 24 | 15 20 23 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) = ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 25 | 24 | mpteq2dva | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) |
| 26 | 16 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 27 | 26 | mpteq1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ↦ ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) ) |
| 28 | revlen | ⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 31 | 30 | mpteq1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ↦ ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) |
| 32 | 25 27 31 | 3eqtr4rd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ↦ ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ↦ ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) ) |
| 33 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 34 | revcl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) ∈ Word 𝐴 ) | |
| 35 | wrdf | ⊢ ( ( reverse ‘ 𝑊 ) ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 ) |
| 38 | fcompt | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ ( reverse ‘ 𝑊 ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ↦ ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) | |
| 39 | 33 37 38 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( reverse ‘ 𝑊 ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ↦ ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) |
| 40 | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) | |
| 41 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑊 ∈ Word 𝐴 ) | |
| 42 | cofunexg | ⊢ ( ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) → ( 𝐹 ∘ 𝑊 ) ∈ V ) | |
| 43 | 40 41 42 | syl2an2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ V ) |
| 44 | revval | ⊢ ( ( 𝐹 ∘ 𝑊 ) ∈ V → ( reverse ‘ ( 𝐹 ∘ 𝑊 ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ↦ ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( reverse ‘ ( 𝐹 ∘ 𝑊 ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ↦ ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) − 𝑥 ) ) ) ) |
| 46 | 32 39 45 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( reverse ‘ 𝑊 ) ) = ( reverse ‘ ( 𝐹 ∘ 𝑊 ) ) ) |