This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cofunexg | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( 𝐴 ∘ 𝐵 ) | |
| 2 | relssdmrn | ⊢ ( Rel ( 𝐴 ∘ 𝐵 ) → ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) |
| 4 | dmcoss | ⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 | |
| 5 | dmexg | ⊢ ( 𝐵 ∈ 𝐶 → dom 𝐵 ∈ V ) | |
| 6 | ssexg | ⊢ ( ( dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V ) → dom ( 𝐴 ∘ 𝐵 ) ∈ V ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝐵 ∈ 𝐶 → dom ( 𝐴 ∘ 𝐵 ) ∈ V ) |
| 8 | 7 | adantl | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → dom ( 𝐴 ∘ 𝐵 ) ∈ V ) |
| 9 | rnco | ⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) | |
| 10 | rnexg | ⊢ ( 𝐵 ∈ 𝐶 → ran 𝐵 ∈ V ) | |
| 11 | resfunexg | ⊢ ( ( Fun 𝐴 ∧ ran 𝐵 ∈ V ) → ( 𝐴 ↾ ran 𝐵 ) ∈ V ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ ran 𝐵 ) ∈ V ) |
| 13 | rnexg | ⊢ ( ( 𝐴 ↾ ran 𝐵 ) ∈ V → ran ( 𝐴 ↾ ran 𝐵 ) ∈ V ) | |
| 14 | 12 13 | syl | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ran ( 𝐴 ↾ ran 𝐵 ) ∈ V ) |
| 15 | 9 14 | eqeltrid | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ran ( 𝐴 ∘ 𝐵 ) ∈ V ) |
| 16 | 8 15 | xpexd | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ∈ V ) |
| 17 | ssexg | ⊢ ( ( ( 𝐴 ∘ 𝐵 ) ⊆ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ∧ ( dom ( 𝐴 ∘ 𝐵 ) × ran ( 𝐴 ∘ 𝐵 ) ) ∈ V ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) | |
| 18 | 3 16 17 | sylancr | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |