This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revval | ⊢ ( 𝑊 ∈ 𝑉 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) | |
| 2 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 4 | id | ⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) | |
| 5 | 2 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 6 | 5 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) |
| 7 | 4 6 | fveq12d | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) |
| 8 | 3 7 | mpteq12dv | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| 9 | df-reverse | ⊢ reverse = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) ) ) | |
| 10 | ovex | ⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V | |
| 11 | 10 | mptex | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ∈ V |
| 12 | 8 9 11 | fvmpt | ⊢ ( 𝑊 ∈ V → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
| 13 | 1 12 | syl | ⊢ ( 𝑊 ∈ 𝑉 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |