This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revco | |- ( ( W e. Word A /\ F : A --> B ) -> ( F o. ( reverse ` W ) ) = ( reverse ` ( F o. W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | |- ( W e. Word A -> W Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 3 | lencl | |- ( W e. Word A -> ( # ` W ) e. NN0 ) |
|
| 4 | 3 | nn0zd | |- ( W e. Word A -> ( # ` W ) e. ZZ ) |
| 5 | fzoval | |- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
|
| 6 | 4 5 | syl | |- ( W e. Word A -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 7 | 6 | adantr | |- ( ( W e. Word A /\ F : A --> B ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 8 | 7 | eleq2d | |- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` W ) ) <-> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) ) |
| 9 | 8 | biimpa | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 10 | fznn0sub2 | |- ( x e. ( 0 ... ( ( # ` W ) - 1 ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 12 | 7 | adantr | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 13 | 11 12 | eleqtrrd | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) |
| 14 | fvco2 | |- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` W ) - 1 ) - x ) ) = ( F ` ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
|
| 15 | 2 13 14 | syl2anc | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` W ) - 1 ) - x ) ) = ( F ` ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
| 16 | lenco | |- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
|
| 17 | 16 | oveq1d | |- ( ( W e. Word A /\ F : A --> B ) -> ( ( # ` ( F o. W ) ) - 1 ) = ( ( # ` W ) - 1 ) ) |
| 18 | 17 | oveq1d | |- ( ( W e. Word A /\ F : A --> B ) -> ( ( ( # ` ( F o. W ) ) - 1 ) - x ) = ( ( ( # ` W ) - 1 ) - x ) ) |
| 19 | 18 | adantr | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` ( F o. W ) ) - 1 ) - x ) = ( ( ( # ` W ) - 1 ) - x ) ) |
| 20 | 19 | fveq2d | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) = ( ( F o. W ) ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
| 21 | revfv | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` x ) = ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
|
| 22 | 21 | adantlr | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` x ) = ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
| 23 | 22 | fveq2d | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( reverse ` W ) ` x ) ) = ( F ` ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
| 24 | 15 20 23 | 3eqtr4d | |- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) = ( F ` ( ( reverse ` W ) ` x ) ) ) |
| 25 | 24 | mpteq2dva | |- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
| 26 | 16 | oveq2d | |- ( ( W e. Word A /\ F : A --> B ) -> ( 0 ..^ ( # ` ( F o. W ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 27 | 26 | mpteq1d | |- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
| 28 | revlen | |- ( W e. Word A -> ( # ` ( reverse ` W ) ) = ( # ` W ) ) |
|
| 29 | 28 | adantr | |- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( reverse ` W ) ) = ( # ` W ) ) |
| 30 | 29 | oveq2d | |- ( ( W e. Word A /\ F : A --> B ) -> ( 0 ..^ ( # ` ( reverse ` W ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 31 | 30 | mpteq1d | |- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
| 32 | 25 27 31 | 3eqtr4rd | |- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) = ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
| 33 | simpr | |- ( ( W e. Word A /\ F : A --> B ) -> F : A --> B ) |
|
| 34 | revcl | |- ( W e. Word A -> ( reverse ` W ) e. Word A ) |
|
| 35 | wrdf | |- ( ( reverse ` W ) e. Word A -> ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) |
|
| 36 | 34 35 | syl | |- ( W e. Word A -> ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) |
| 37 | 36 | adantr | |- ( ( W e. Word A /\ F : A --> B ) -> ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) |
| 38 | fcompt | |- ( ( F : A --> B /\ ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) -> ( F o. ( reverse ` W ) ) = ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
|
| 39 | 33 37 38 | syl2anc | |- ( ( W e. Word A /\ F : A --> B ) -> ( F o. ( reverse ` W ) ) = ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
| 40 | ffun | |- ( F : A --> B -> Fun F ) |
|
| 41 | simpl | |- ( ( W e. Word A /\ F : A --> B ) -> W e. Word A ) |
|
| 42 | cofunexg | |- ( ( Fun F /\ W e. Word A ) -> ( F o. W ) e. _V ) |
|
| 43 | 40 41 42 | syl2an2 | |- ( ( W e. Word A /\ F : A --> B ) -> ( F o. W ) e. _V ) |
| 44 | revval | |- ( ( F o. W ) e. _V -> ( reverse ` ( F o. W ) ) = ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
|
| 45 | 43 44 | syl | |- ( ( W e. Word A /\ F : A --> B ) -> ( reverse ` ( F o. W ) ) = ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
| 46 | 32 39 45 | 3eqtr4d | |- ( ( W e. Word A /\ F : A --> B ) -> ( F o. ( reverse ` W ) ) = ( reverse ` ( F o. W ) ) ) |