This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Length of a mapped word is unchanged. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lenco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | wrdf | ⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 4 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
| 6 | ffn | ⊢ ( ( 𝐹 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 → ( 𝐹 ∘ 𝑊 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 7 | hashfn | ⊢ ( ( 𝐹 ∘ 𝑊 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 | ffn | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 10 | hashfn | ⊢ ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 11 | 3 9 10 | 3syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 12 | 8 11 | eqtr4d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |