This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restutopopn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) = ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑡 ∈ 𝑈 ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) | |
| 2 | 1 | simprbda | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → 𝐴 ⊆ 𝑋 ) |
| 3 | restutop | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ⊆ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ⊆ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| 5 | trust | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) | |
| 6 | 2 5 | syldan | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
| 7 | elutop | ⊢ ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) → ( 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ( 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) |
| 9 | 8 | simprbda | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑏 ⊆ 𝐴 ) |
| 10 | 2 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐴 ⊆ 𝑋 ) |
| 11 | 9 10 | sstrd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑏 ⊆ 𝑋 ) |
| 12 | simp-9l | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 13 | simplr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → 𝑡 ∈ 𝑈 ) | |
| 14 | simp-4r | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → 𝑤 ∈ 𝑈 ) | |
| 15 | ustincl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑡 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ) → ( 𝑡 ∩ 𝑤 ) ∈ 𝑈 ) | |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( 𝑡 ∩ 𝑤 ) ∈ 𝑈 ) |
| 17 | inimass | ⊢ ( ( 𝑡 ∩ 𝑤 ) “ { 𝑥 } ) ⊆ ( ( 𝑡 “ { 𝑥 } ) ∩ ( 𝑤 “ { 𝑥 } ) ) | |
| 18 | ssrin | ⊢ ( ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 → ( ( 𝑡 “ { 𝑥 } ) ∩ ( 𝑤 “ { 𝑥 } ) ) ⊆ ( 𝐴 ∩ ( 𝑤 “ { 𝑥 } ) ) ) | |
| 19 | 18 | adantl | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( ( 𝑡 “ { 𝑥 } ) ∩ ( 𝑤 “ { 𝑥 } ) ) ⊆ ( 𝐴 ∩ ( 𝑤 “ { 𝑥 } ) ) ) |
| 20 | simpllr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 21 | 20 | imaeq1d | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( 𝑢 “ { 𝑥 } ) = ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ) |
| 22 | 9 | ad5antr | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) → 𝑏 ⊆ 𝐴 ) |
| 23 | simp-5r | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) → 𝑥 ∈ 𝑏 ) | |
| 24 | 22 23 | sseldd | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 26 | inimasn | ⊢ ( 𝑥 ∈ V → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) = ( ( 𝑤 “ { 𝑥 } ) ∩ ( ( 𝐴 × 𝐴 ) “ { 𝑥 } ) ) ) | |
| 27 | 26 | elv | ⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) = ( ( 𝑤 “ { 𝑥 } ) ∩ ( ( 𝐴 × 𝐴 ) “ { 𝑥 } ) ) |
| 28 | xpimasn | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × 𝐴 ) “ { 𝑥 } ) = 𝐴 ) | |
| 29 | 28 | ineq2d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑤 “ { 𝑥 } ) ∩ ( ( 𝐴 × 𝐴 ) “ { 𝑥 } ) ) = ( ( 𝑤 “ { 𝑥 } ) ∩ 𝐴 ) ) |
| 30 | 27 29 | eqtrid | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) = ( ( 𝑤 “ { 𝑥 } ) ∩ 𝐴 ) ) |
| 31 | incom | ⊢ ( ( 𝑤 “ { 𝑥 } ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝑤 “ { 𝑥 } ) ) | |
| 32 | 30 31 | eqtrdi | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) = ( 𝐴 ∩ ( 𝑤 “ { 𝑥 } ) ) ) |
| 33 | 25 32 | syl | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) = ( 𝐴 ∩ ( 𝑤 “ { 𝑥 } ) ) ) |
| 34 | 21 33 | eqtrd | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( 𝑢 “ { 𝑥 } ) = ( 𝐴 ∩ ( 𝑤 “ { 𝑥 } ) ) ) |
| 35 | 19 34 | sseqtrrd | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( ( 𝑡 “ { 𝑥 } ) ∩ ( 𝑤 “ { 𝑥 } ) ) ⊆ ( 𝑢 “ { 𝑥 } ) ) |
| 36 | simp-5r | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) | |
| 37 | 35 36 | sstrd | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( ( 𝑡 “ { 𝑥 } ) ∩ ( 𝑤 “ { 𝑥 } ) ) ⊆ 𝑏 ) |
| 38 | 17 37 | sstrid | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ( ( 𝑡 ∩ 𝑤 ) “ { 𝑥 } ) ⊆ 𝑏 ) |
| 39 | imaeq1 | ⊢ ( 𝑣 = ( 𝑡 ∩ 𝑤 ) → ( 𝑣 “ { 𝑥 } ) = ( ( 𝑡 ∩ 𝑤 ) “ { 𝑥 } ) ) | |
| 40 | 39 | sseq1d | ⊢ ( 𝑣 = ( 𝑡 ∩ 𝑤 ) → ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ↔ ( ( 𝑡 ∩ 𝑤 ) “ { 𝑥 } ) ⊆ 𝑏 ) ) |
| 41 | 40 | rspcev | ⊢ ( ( ( 𝑡 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( 𝑡 ∩ 𝑤 ) “ { 𝑥 } ) ⊆ 𝑏 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 42 | 16 38 41 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑡 ∈ 𝑈 ) ∧ ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 43 | simp-4l | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ) | |
| 44 | 43 | ad2antrr | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ) |
| 45 | 1 | simplbda | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑡 ∈ 𝑈 ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) |
| 46 | 45 | r19.21bi | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑡 ∈ 𝑈 ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) |
| 47 | 44 24 46 | syl2anc | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑡 ∈ 𝑈 ( 𝑡 “ { 𝑥 } ) ⊆ 𝐴 ) |
| 48 | 42 47 | r19.29a | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 49 | simplr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) → 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) | |
| 50 | sqxpexg | ⊢ ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) → ( 𝐴 × 𝐴 ) ∈ V ) | |
| 51 | elrest | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑤 ∈ 𝑈 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 52 | 50 51 | sylan2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ( 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑤 ∈ 𝑈 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 53 | 52 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑤 ∈ 𝑈 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 54 | 43 49 53 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) → ∃ 𝑤 ∈ 𝑈 𝑢 = ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 55 | 48 54 | r19.29a | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 56 | 8 | simplbda | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ∀ 𝑥 ∈ 𝑏 ∃ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 57 | 56 | r19.21bi | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) → ∃ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑢 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 58 | 55 57 | r19.29a | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑥 ∈ 𝑏 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 59 | 58 | ralrimiva | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 60 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑏 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) | |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝑏 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) |
| 62 | 11 59 61 | mpbir2and | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑏 ∈ ( unifTop ‘ 𝑈 ) ) |
| 63 | dfss2 | ⊢ ( 𝑏 ⊆ 𝐴 ↔ ( 𝑏 ∩ 𝐴 ) = 𝑏 ) | |
| 64 | 9 63 | sylib | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝑏 ∩ 𝐴 ) = 𝑏 ) |
| 65 | 64 | eqcomd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑏 = ( 𝑏 ∩ 𝐴 ) ) |
| 66 | ineq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∩ 𝐴 ) = ( 𝑏 ∩ 𝐴 ) ) | |
| 67 | 66 | rspceeqv | ⊢ ( ( 𝑏 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑏 = ( 𝑏 ∩ 𝐴 ) ) → ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 68 | 62 65 67 | syl2anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 69 | fvex | ⊢ ( unifTop ‘ 𝑈 ) ∈ V | |
| 70 | elrest | ⊢ ( ( ( unifTop ‘ 𝑈 ) ∈ V ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ) | |
| 71 | 69 70 | mpan | ⊢ ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 73 | 68 72 | mpbird | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) |
| 74 | 4 73 | eqelssd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ∈ ( unifTop ‘ 𝑈 ) ) → ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) = ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |