This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Open sets in the topology induced by an uniform structure U on X (Contributed by Thierry Arnoux, 30-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopval | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ 𝐴 ∈ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) ) |
| 3 | sseq2 | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) | |
| 4 | 3 | rexbidv | ⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) |
| 5 | 4 | raleqbi1dv | ⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) |
| 6 | 5 | elrab | ⊢ ( 𝐴 ∈ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) |
| 7 | 2 6 | bitrdi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) |
| 8 | elex | ⊢ ( 𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V ) | |
| 9 | 8 | a1i | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V ) ) |
| 10 | elfvex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
| 12 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 13 | 11 12 | ssexd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 14 | 13 | ex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ⊆ 𝑋 → 𝐴 ∈ V ) ) |
| 15 | elpwg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) | |
| 16 | 15 | a1i | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) ) |
| 17 | 9 14 16 | pm5.21ndd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
| 18 | 17 | anbi1d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) |
| 19 | 7 18 | bitrd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐴 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝐴 ) ) ) |