This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform structure is closed under finite intersection. Condition F_II of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustincl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈 ) → ( 𝑉 ∩ 𝑊 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | isust | ⊢ ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
| 5 | 4 | simp3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
| 6 | sseq1 | ⊢ ( 𝑣 = 𝑉 → ( 𝑣 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑤 ) ) | |
| 7 | 6 | imbi1d | ⊢ ( 𝑣 = 𝑉 → ( ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) ) |
| 9 | ineq1 | ⊢ ( 𝑣 = 𝑉 → ( 𝑣 ∩ 𝑤 ) = ( 𝑉 ∩ 𝑤 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑣 = 𝑉 → ( ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ↔ ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ↔ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ) ) |
| 12 | sseq2 | ⊢ ( 𝑣 = 𝑉 → ( ( I ↾ 𝑋 ) ⊆ 𝑣 ↔ ( I ↾ 𝑋 ) ⊆ 𝑉 ) ) | |
| 13 | cnveq | ⊢ ( 𝑣 = 𝑉 → ◡ 𝑣 = ◡ 𝑉 ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑣 = 𝑉 → ( ◡ 𝑣 ∈ 𝑈 ↔ ◡ 𝑉 ∈ 𝑈 ) ) |
| 15 | sseq2 | ⊢ ( 𝑣 = 𝑉 → ( ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ↔ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) | |
| 16 | 15 | rexbidv | ⊢ ( 𝑣 = 𝑉 → ( ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
| 17 | 12 14 16 | 3anbi123d | ⊢ ( 𝑣 = 𝑉 → ( ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ↔ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
| 18 | 8 11 17 | 3anbi123d | ⊢ ( 𝑣 = 𝑉 → ( ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) ) |
| 19 | 18 | rspcv | ⊢ ( 𝑉 ∈ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) ) |
| 20 | 5 19 | mpan9 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
| 21 | 20 | simp2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ) |
| 22 | ineq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝑉 ∩ 𝑤 ) = ( 𝑉 ∩ 𝑊 ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ↔ ( 𝑉 ∩ 𝑊 ) ∈ 𝑈 ) ) |
| 24 | 23 | rspcv | ⊢ ( 𝑊 ∈ 𝑈 → ( ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 → ( 𝑉 ∩ 𝑊 ) ∈ 𝑈 ) ) |
| 25 | 21 24 | mpan9 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑊 ∈ 𝑈 ) → ( 𝑉 ∩ 𝑊 ) ∈ 𝑈 ) |
| 26 | 25 | 3impa | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈 ) → ( 𝑉 ∩ 𝑊 ) ∈ 𝑈 ) |