This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restutop | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ⊆ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ) | |
| 2 | fvexd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ V ) | |
| 3 | elfvex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
| 5 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 6 | 4 5 | ssexd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 7 | elrest | ⊢ ( ( ( unifTop ‘ 𝑈 ) ∈ V ∧ 𝐴 ∈ V ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ) | |
| 8 | 2 6 7 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 10 | inss2 | ⊢ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 | |
| 11 | sseq1 | ⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → ( 𝑏 ⊆ 𝐴 ↔ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
| 13 | 12 | rexlimivw | ⊢ ( ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
| 14 | 9 13 | syl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → 𝑏 ⊆ 𝐴 ) |
| 15 | simp-5l | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 16 | 15 | ad2antrr | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 17 | 6 | ad6antr | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝐴 ∈ V ) |
| 18 | 17 17 | xpexd | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 19 | simplr | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑢 ∈ 𝑈 ) | |
| 20 | elrestr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) | |
| 21 | 16 18 19 20 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) |
| 22 | inss1 | ⊢ ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑢 | |
| 23 | imass1 | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑢 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑢 “ { 𝑥 } ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑢 “ { 𝑥 } ) |
| 25 | sstr | ⊢ ( ( ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑢 “ { 𝑥 } ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) | |
| 26 | 24 25 | mpan | ⊢ ( ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) |
| 27 | imassrn | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ran ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) | |
| 28 | rnin | ⊢ ran ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( ran 𝑢 ∩ ran ( 𝐴 × 𝐴 ) ) | |
| 29 | 27 28 | sstri | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( ran 𝑢 ∩ ran ( 𝐴 × 𝐴 ) ) |
| 30 | inss2 | ⊢ ( ran 𝑢 ∩ ran ( 𝐴 × 𝐴 ) ) ⊆ ran ( 𝐴 × 𝐴 ) | |
| 31 | 29 30 | sstri | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ran ( 𝐴 × 𝐴 ) |
| 32 | rnxpid | ⊢ ran ( 𝐴 × 𝐴 ) = 𝐴 | |
| 33 | 31 32 | sseqtri | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝐴 |
| 34 | 33 | a1i | ⊢ ( ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝐴 ) |
| 35 | 26 34 | ssind | ⊢ ( ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑎 ∩ 𝐴 ) ) |
| 36 | 35 | adantl | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑎 ∩ 𝐴 ) ) |
| 37 | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑏 = ( 𝑎 ∩ 𝐴 ) ) | |
| 38 | 36 37 | sseqtrrd | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑏 ) |
| 39 | imaeq1 | ⊢ ( 𝑣 = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑣 “ { 𝑥 } ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ) | |
| 40 | 39 | sseq1d | ⊢ ( 𝑣 = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ↔ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑏 ) ) |
| 41 | 40 | rspcev | ⊢ ( ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑏 ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 42 | 21 38 41 | syl2anc | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 43 | simplr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) | |
| 44 | simpllr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑏 ) | |
| 45 | simpr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑏 = ( 𝑎 ∩ 𝐴 ) ) | |
| 46 | 44 45 | eleqtrd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑥 ∈ ( 𝑎 ∩ 𝐴 ) ) |
| 47 | 46 | elin1d | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑎 ) |
| 48 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑎 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝑎 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) ) ) | |
| 49 | 48 | simplbda | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) |
| 50 | 49 | r19.21bi | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) |
| 51 | 15 43 47 50 | syl21anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) |
| 52 | 42 51 | r19.29a | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 53 | 9 | adantr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) → ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 54 | 52 53 | r19.29a | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 55 | 54 | ralrimiva | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 56 | trust | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) | |
| 57 | elutop | ⊢ ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) → ( 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) |
| 59 | 58 | biimpar | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) → 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| 60 | 1 14 55 59 | syl12anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| 61 | 60 | ex | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) → 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ) |
| 62 | 61 | ssrdv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ⊆ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |