This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inimasn | ⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝐴 ∩ 𝐵 ) “ { 𝐶 } ) = ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) ↔ ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ∧ 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ) ) | |
| 2 | elin | ⊢ ( 〈 𝐶 , 𝑥 〉 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 〈 𝐶 , 𝑥 〉 ∈ 𝐴 ∧ 〈 𝐶 , 𝑥 〉 ∈ 𝐵 ) ) | |
| 3 | 2 | a1i | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈 𝐶 , 𝑥 〉 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 〈 𝐶 , 𝑥 〉 ∈ 𝐴 ∧ 〈 𝐶 , 𝑥 〉 ∈ 𝐵 ) ) ) |
| 4 | elimasng | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) “ { 𝐶 } ) ↔ 〈 𝐶 , 𝑥 〉 ∈ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 5 | 4 | elvd | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) “ { 𝐶 } ) ↔ 〈 𝐶 , 𝑥 〉 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 6 | elimasng | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ↔ 〈 𝐶 , 𝑥 〉 ∈ 𝐴 ) ) | |
| 7 | 6 | elvd | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ↔ 〈 𝐶 , 𝑥 〉 ∈ 𝐴 ) ) |
| 8 | elimasng | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ↔ 〈 𝐶 , 𝑥 〉 ∈ 𝐵 ) ) | |
| 9 | 8 | elvd | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ↔ 〈 𝐶 , 𝑥 〉 ∈ 𝐵 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ∧ 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ) ↔ ( 〈 𝐶 , 𝑥 〉 ∈ 𝐴 ∧ 〈 𝐶 , 𝑥 〉 ∈ 𝐵 ) ) ) |
| 11 | 3 5 10 | 3bitr4rd | ⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ ( 𝐴 “ { 𝐶 } ) ∧ 𝑥 ∈ ( 𝐵 “ { 𝐶 } ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) “ { 𝐶 } ) ) ) |
| 12 | 1 11 | bitr2id | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) “ { 𝐶 } ) ↔ 𝑥 ∈ ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) ) ) |
| 13 | 12 | eqrdv | ⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝐴 ∩ 𝐵 ) “ { 𝐶 } ) = ( ( 𝐴 “ { 𝐶 } ) ∩ ( 𝐵 “ { 𝐶 } ) ) ) |