This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restutopopn | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( ( unifTop ` U ) |`t A ) = ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elutop | |- ( U e. ( UnifOn ` X ) -> ( A e. ( unifTop ` U ) <-> ( A C_ X /\ A. x e. A E. t e. U ( t " { x } ) C_ A ) ) ) |
|
| 2 | 1 | simprbda | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> A C_ X ) |
| 3 | restutop | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( unifTop ` U ) |`t A ) C_ ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
|
| 4 | 2 3 | syldan | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( ( unifTop ` U ) |`t A ) C_ ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
| 5 | trust | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
|
| 6 | 2 5 | syldan | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
| 7 | elutop | |- ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) ) ) |
| 9 | 8 | simprbda | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b C_ A ) |
| 10 | 2 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> A C_ X ) |
| 11 | 9 10 | sstrd | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b C_ X ) |
| 12 | simp-9l | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> U e. ( UnifOn ` X ) ) |
|
| 13 | simplr | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> t e. U ) |
|
| 14 | simp-4r | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> w e. U ) |
|
| 15 | ustincl | |- ( ( U e. ( UnifOn ` X ) /\ t e. U /\ w e. U ) -> ( t i^i w ) e. U ) |
|
| 16 | 12 13 14 15 | syl3anc | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( t i^i w ) e. U ) |
| 17 | inimass | |- ( ( t i^i w ) " { x } ) C_ ( ( t " { x } ) i^i ( w " { x } ) ) |
|
| 18 | ssrin | |- ( ( t " { x } ) C_ A -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ ( A i^i ( w " { x } ) ) ) |
|
| 19 | 18 | adantl | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ ( A i^i ( w " { x } ) ) ) |
| 20 | simpllr | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> u = ( w i^i ( A X. A ) ) ) |
|
| 21 | 20 | imaeq1d | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( u " { x } ) = ( ( w i^i ( A X. A ) ) " { x } ) ) |
| 22 | 9 | ad5antr | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> b C_ A ) |
| 23 | simp-5r | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> x e. b ) |
|
| 24 | 22 23 | sseldd | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> x e. A ) |
| 25 | 24 | ad2antrr | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> x e. A ) |
| 26 | inimasn | |- ( x e. _V -> ( ( w i^i ( A X. A ) ) " { x } ) = ( ( w " { x } ) i^i ( ( A X. A ) " { x } ) ) ) |
|
| 27 | 26 | elv | |- ( ( w i^i ( A X. A ) ) " { x } ) = ( ( w " { x } ) i^i ( ( A X. A ) " { x } ) ) |
| 28 | xpimasn | |- ( x e. A -> ( ( A X. A ) " { x } ) = A ) |
|
| 29 | 28 | ineq2d | |- ( x e. A -> ( ( w " { x } ) i^i ( ( A X. A ) " { x } ) ) = ( ( w " { x } ) i^i A ) ) |
| 30 | 27 29 | eqtrid | |- ( x e. A -> ( ( w i^i ( A X. A ) ) " { x } ) = ( ( w " { x } ) i^i A ) ) |
| 31 | incom | |- ( ( w " { x } ) i^i A ) = ( A i^i ( w " { x } ) ) |
|
| 32 | 30 31 | eqtrdi | |- ( x e. A -> ( ( w i^i ( A X. A ) ) " { x } ) = ( A i^i ( w " { x } ) ) ) |
| 33 | 25 32 | syl | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( w i^i ( A X. A ) ) " { x } ) = ( A i^i ( w " { x } ) ) ) |
| 34 | 21 33 | eqtrd | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( u " { x } ) = ( A i^i ( w " { x } ) ) ) |
| 35 | 19 34 | sseqtrrd | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ ( u " { x } ) ) |
| 36 | simp-5r | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( u " { x } ) C_ b ) |
|
| 37 | 35 36 | sstrd | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ b ) |
| 38 | 17 37 | sstrid | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t i^i w ) " { x } ) C_ b ) |
| 39 | imaeq1 | |- ( v = ( t i^i w ) -> ( v " { x } ) = ( ( t i^i w ) " { x } ) ) |
|
| 40 | 39 | sseq1d | |- ( v = ( t i^i w ) -> ( ( v " { x } ) C_ b <-> ( ( t i^i w ) " { x } ) C_ b ) ) |
| 41 | 40 | rspcev | |- ( ( ( t i^i w ) e. U /\ ( ( t i^i w ) " { x } ) C_ b ) -> E. v e. U ( v " { x } ) C_ b ) |
| 42 | 16 38 41 | syl2anc | |- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> E. v e. U ( v " { x } ) C_ b ) |
| 43 | simp-4l | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) ) |
|
| 44 | 43 | ad2antrr | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) ) |
| 45 | 1 | simplbda | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> A. x e. A E. t e. U ( t " { x } ) C_ A ) |
| 46 | 45 | r19.21bi | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ x e. A ) -> E. t e. U ( t " { x } ) C_ A ) |
| 47 | 44 24 46 | syl2anc | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> E. t e. U ( t " { x } ) C_ A ) |
| 48 | 42 47 | r19.29a | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> E. v e. U ( v " { x } ) C_ b ) |
| 49 | simplr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> u e. ( U |`t ( A X. A ) ) ) |
|
| 50 | sqxpexg | |- ( A e. ( unifTop ` U ) -> ( A X. A ) e. _V ) |
|
| 51 | elrest | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( u e. ( U |`t ( A X. A ) ) <-> E. w e. U u = ( w i^i ( A X. A ) ) ) ) |
|
| 52 | 50 51 | sylan2 | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( u e. ( U |`t ( A X. A ) ) <-> E. w e. U u = ( w i^i ( A X. A ) ) ) ) |
| 53 | 52 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ u e. ( U |`t ( A X. A ) ) ) -> E. w e. U u = ( w i^i ( A X. A ) ) ) |
| 54 | 43 49 53 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> E. w e. U u = ( w i^i ( A X. A ) ) ) |
| 55 | 48 54 | r19.29a | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> E. v e. U ( v " { x } ) C_ b ) |
| 56 | 8 | simplbda | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> A. x e. b E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) |
| 57 | 56 | r19.21bi | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) -> E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) |
| 58 | 55 57 | r19.29a | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) -> E. v e. U ( v " { x } ) C_ b ) |
| 59 | 58 | ralrimiva | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> A. x e. b E. v e. U ( v " { x } ) C_ b ) |
| 60 | elutop | |- ( U e. ( UnifOn ` X ) -> ( b e. ( unifTop ` U ) <-> ( b C_ X /\ A. x e. b E. v e. U ( v " { x } ) C_ b ) ) ) |
|
| 61 | 60 | ad2antrr | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> ( b e. ( unifTop ` U ) <-> ( b C_ X /\ A. x e. b E. v e. U ( v " { x } ) C_ b ) ) ) |
| 62 | 11 59 61 | mpbir2and | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b e. ( unifTop ` U ) ) |
| 63 | dfss2 | |- ( b C_ A <-> ( b i^i A ) = b ) |
|
| 64 | 9 63 | sylib | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> ( b i^i A ) = b ) |
| 65 | 64 | eqcomd | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b = ( b i^i A ) ) |
| 66 | ineq1 | |- ( a = b -> ( a i^i A ) = ( b i^i A ) ) |
|
| 67 | 66 | rspceeqv | |- ( ( b e. ( unifTop ` U ) /\ b = ( b i^i A ) ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
| 68 | 62 65 67 | syl2anc | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
| 69 | fvex | |- ( unifTop ` U ) e. _V |
|
| 70 | elrest | |- ( ( ( unifTop ` U ) e. _V /\ A e. ( unifTop ` U ) ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
|
| 71 | 69 70 | mpan | |- ( A e. ( unifTop ` U ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
| 72 | 71 | ad2antlr | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
| 73 | 68 72 | mpbird | |- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b e. ( ( unifTop ` U ) |`t A ) ) |
| 74 | 4 73 | eqelssd | |- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( ( unifTop ` U ) |`t A ) = ( unifTop ` ( U |`t ( A X. A ) ) ) ) |