This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | ||
| Assertion | restlp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 3 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑌 ) | |
| 4 | 3 | ssdifssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑌 ) |
| 5 | 1 2 | restcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) = ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∩ 𝑌 ) ) |
| 6 | 4 5 | syld3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) = ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∩ 𝑌 ) ) |
| 7 | 6 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∩ 𝑌 ) ) ) |
| 8 | elin | ⊢ ( 𝑥 ∈ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∧ 𝑥 ∈ 𝑌 ) ) | |
| 9 | 7 8 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∧ 𝑥 ∈ 𝑌 ) ) ) |
| 10 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐽 ∈ Top ) | |
| 11 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 12 | 10 11 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 13 | simp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑌 ⊆ 𝑋 ) | |
| 14 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 16 | 2 15 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 17 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐾 ∈ Top ) |
| 19 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 20 | 16 19 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
| 21 | 3 20 | sseqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ∪ 𝐾 ) |
| 22 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 23 | 22 | islp | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐾 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 24 | 18 21 23 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 25 | elin | ⊢ ( 𝑥 ∈ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) ) | |
| 26 | 3 13 | sstrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑋 ) |
| 27 | 1 | islp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 28 | 10 26 27 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 29 | 28 | anbi1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∧ 𝑥 ∈ 𝑌 ) ) ) |
| 30 | 25 29 | bitrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ∧ 𝑥 ∈ 𝑌 ) ) ) |
| 31 | 9 24 30 | 3bitr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) ) |
| 32 | 31 | eqrdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( limPt ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |