This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class S is a closed set". (Contributed by NM, 2-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | iscld | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cldval | ⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |
| 3 | 2 | eleq2d | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑆 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) ) |
| 4 | difeq2 | ⊢ ( 𝑥 = 𝑆 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑆 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑆 → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ↔ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) |
| 6 | 5 | elrab | ⊢ ( 𝑆 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) |
| 7 | 3 6 | bitrdi | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
| 8 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 9 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 11 | 10 | anbi1d | ⊢ ( 𝐽 ∈ Top → ( ( 𝑆 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
| 12 | 7 11 | bitrd | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |