This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009) (Proof shortened by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restcld.1 | |- X = U. J |
|
| Assertion | restcld | |- ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcld.1 | |- X = U. J |
|
| 2 | id | |- ( S C_ X -> S C_ X ) |
|
| 3 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 4 | ssexg | |- ( ( S C_ X /\ X e. J ) -> S e. _V ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( J e. Top /\ S C_ X ) -> S e. _V ) |
| 6 | resttop | |- ( ( J e. Top /\ S e. _V ) -> ( J |`t S ) e. Top ) |
|
| 7 | 5 6 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( J |`t S ) e. Top ) |
| 8 | eqid | |- U. ( J |`t S ) = U. ( J |`t S ) |
|
| 9 | 8 | iscld | |- ( ( J |`t S ) e. Top -> ( A e. ( Clsd ` ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) ) |
| 10 | 7 9 | syl | |- ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) ) |
| 11 | 1 | restuni | |- ( ( J e. Top /\ S C_ X ) -> S = U. ( J |`t S ) ) |
| 12 | 11 | sseq2d | |- ( ( J e. Top /\ S C_ X ) -> ( A C_ S <-> A C_ U. ( J |`t S ) ) ) |
| 13 | 11 | difeq1d | |- ( ( J e. Top /\ S C_ X ) -> ( S \ A ) = ( U. ( J |`t S ) \ A ) ) |
| 14 | 13 | eleq1d | |- ( ( J e. Top /\ S C_ X ) -> ( ( S \ A ) e. ( J |`t S ) <-> ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) |
| 15 | 12 14 | anbi12d | |- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) ) |
| 16 | elrest | |- ( ( J e. Top /\ S e. _V ) -> ( ( S \ A ) e. ( J |`t S ) <-> E. o e. J ( S \ A ) = ( o i^i S ) ) ) |
|
| 17 | 5 16 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( ( S \ A ) e. ( J |`t S ) <-> E. o e. J ( S \ A ) = ( o i^i S ) ) ) |
| 18 | 17 | anbi2d | |- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( A C_ S /\ E. o e. J ( S \ A ) = ( o i^i S ) ) ) ) |
| 19 | 1 | opncld | |- ( ( J e. Top /\ o e. J ) -> ( X \ o ) e. ( Clsd ` J ) ) |
| 20 | 19 | ad5ant14 | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( X \ o ) e. ( Clsd ` J ) ) |
| 21 | incom | |- ( X i^i S ) = ( S i^i X ) |
|
| 22 | dfss2 | |- ( S C_ X <-> ( S i^i X ) = S ) |
|
| 23 | 22 | biimpi | |- ( S C_ X -> ( S i^i X ) = S ) |
| 24 | 21 23 | eqtrid | |- ( S C_ X -> ( X i^i S ) = S ) |
| 25 | 24 | ad4antlr | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( X i^i S ) = S ) |
| 26 | 25 | difeq1d | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( ( X i^i S ) \ o ) = ( S \ o ) ) |
| 27 | difeq2 | |- ( ( S \ A ) = ( o i^i S ) -> ( S \ ( S \ A ) ) = ( S \ ( o i^i S ) ) ) |
|
| 28 | difindi | |- ( S \ ( o i^i S ) ) = ( ( S \ o ) u. ( S \ S ) ) |
|
| 29 | difid | |- ( S \ S ) = (/) |
|
| 30 | 29 | uneq2i | |- ( ( S \ o ) u. ( S \ S ) ) = ( ( S \ o ) u. (/) ) |
| 31 | un0 | |- ( ( S \ o ) u. (/) ) = ( S \ o ) |
|
| 32 | 28 30 31 | 3eqtri | |- ( S \ ( o i^i S ) ) = ( S \ o ) |
| 33 | 27 32 | eqtrdi | |- ( ( S \ A ) = ( o i^i S ) -> ( S \ ( S \ A ) ) = ( S \ o ) ) |
| 34 | 33 | adantl | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( S \ ( S \ A ) ) = ( S \ o ) ) |
| 35 | dfss4 | |- ( A C_ S <-> ( S \ ( S \ A ) ) = A ) |
|
| 36 | 35 | biimpi | |- ( A C_ S -> ( S \ ( S \ A ) ) = A ) |
| 37 | 36 | ad3antlr | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( S \ ( S \ A ) ) = A ) |
| 38 | 26 34 37 | 3eqtr2rd | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> A = ( ( X i^i S ) \ o ) ) |
| 39 | 21 | difeq1i | |- ( ( X i^i S ) \ o ) = ( ( S i^i X ) \ o ) |
| 40 | indif2 | |- ( S i^i ( X \ o ) ) = ( ( S i^i X ) \ o ) |
|
| 41 | incom | |- ( S i^i ( X \ o ) ) = ( ( X \ o ) i^i S ) |
|
| 42 | 39 40 41 | 3eqtr2i | |- ( ( X i^i S ) \ o ) = ( ( X \ o ) i^i S ) |
| 43 | 38 42 | eqtrdi | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> A = ( ( X \ o ) i^i S ) ) |
| 44 | ineq1 | |- ( x = ( X \ o ) -> ( x i^i S ) = ( ( X \ o ) i^i S ) ) |
|
| 45 | 44 | rspceeqv | |- ( ( ( X \ o ) e. ( Clsd ` J ) /\ A = ( ( X \ o ) i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) |
| 46 | 20 43 45 | syl2anc | |- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) |
| 47 | 46 | rexlimdva2 | |- ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) -> ( E. o e. J ( S \ A ) = ( o i^i S ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 48 | 47 | expimpd | |- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ E. o e. J ( S \ A ) = ( o i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 49 | 18 48 | sylbid | |- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 50 | difindi | |- ( S \ ( x i^i S ) ) = ( ( S \ x ) u. ( S \ S ) ) |
|
| 51 | 29 | uneq2i | |- ( ( S \ x ) u. ( S \ S ) ) = ( ( S \ x ) u. (/) ) |
| 52 | un0 | |- ( ( S \ x ) u. (/) ) = ( S \ x ) |
|
| 53 | 50 51 52 | 3eqtri | |- ( S \ ( x i^i S ) ) = ( S \ x ) |
| 54 | difin2 | |- ( S C_ X -> ( S \ x ) = ( ( X \ x ) i^i S ) ) |
|
| 55 | 54 | adantl | |- ( ( J e. Top /\ S C_ X ) -> ( S \ x ) = ( ( X \ x ) i^i S ) ) |
| 56 | 53 55 | eqtrid | |- ( ( J e. Top /\ S C_ X ) -> ( S \ ( x i^i S ) ) = ( ( X \ x ) i^i S ) ) |
| 57 | 56 | adantr | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( S \ ( x i^i S ) ) = ( ( X \ x ) i^i S ) ) |
| 58 | simpll | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> J e. Top ) |
|
| 59 | 5 | adantr | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> S e. _V ) |
| 60 | 1 | cldopn | |- ( x e. ( Clsd ` J ) -> ( X \ x ) e. J ) |
| 61 | 60 | adantl | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( X \ x ) e. J ) |
| 62 | elrestr | |- ( ( J e. Top /\ S e. _V /\ ( X \ x ) e. J ) -> ( ( X \ x ) i^i S ) e. ( J |`t S ) ) |
|
| 63 | 58 59 61 62 | syl3anc | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( ( X \ x ) i^i S ) e. ( J |`t S ) ) |
| 64 | 57 63 | eqeltrd | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( S \ ( x i^i S ) ) e. ( J |`t S ) ) |
| 65 | inss2 | |- ( x i^i S ) C_ S |
|
| 66 | 64 65 | jctil | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( ( x i^i S ) C_ S /\ ( S \ ( x i^i S ) ) e. ( J |`t S ) ) ) |
| 67 | sseq1 | |- ( A = ( x i^i S ) -> ( A C_ S <-> ( x i^i S ) C_ S ) ) |
|
| 68 | difeq2 | |- ( A = ( x i^i S ) -> ( S \ A ) = ( S \ ( x i^i S ) ) ) |
|
| 69 | 68 | eleq1d | |- ( A = ( x i^i S ) -> ( ( S \ A ) e. ( J |`t S ) <-> ( S \ ( x i^i S ) ) e. ( J |`t S ) ) ) |
| 70 | 67 69 | anbi12d | |- ( A = ( x i^i S ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( ( x i^i S ) C_ S /\ ( S \ ( x i^i S ) ) e. ( J |`t S ) ) ) ) |
| 71 | 66 70 | syl5ibrcom | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( A = ( x i^i S ) -> ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) ) ) |
| 72 | 71 | rexlimdva | |- ( ( J e. Top /\ S C_ X ) -> ( E. x e. ( Clsd ` J ) A = ( x i^i S ) -> ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) ) ) |
| 73 | 49 72 | impbid | |- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 74 | 10 15 73 | 3bitr2d | |- ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |