This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difin2 | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 ∖ 𝐵 ) = ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) | |
| 2 | 1 | pm4.71d | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 3 | 2 | anbi1d | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 4 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 5 | ancom | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) | |
| 6 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) | |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 8 | 6 7 | bianbi | ⊢ ( 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 9 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) | |
| 10 | 5 8 9 | 3bitr4i | ⊢ ( 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 11 | 3 4 10 | 3bitr4g | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ) ) |
| 12 | 11 | eqrdv | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 ∖ 𝐵 ) = ( ( 𝐶 ∖ 𝐵 ) ∩ 𝐴 ) ) |