This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | ||
| resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| Assertion | resspsrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | |
| 4 | resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 6 | resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | eqid | ⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 9 | eqid | ⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) | |
| 10 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑇 ) | |
| 12 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 13 | 2 | subrgbas | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 14 | 12 13 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 15 | 11 14 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 16 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 17 | 3 7 8 4 9 10 15 16 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑌 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝐻 ) 𝑌 ) ) |
| 18 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 19 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 20 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 21 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 22 | 19 | subrgss | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 23 | 12 22 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 24 | 23 11 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 25 | 1 2 3 4 5 6 | resspsrbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 26 | 5 20 | ressbasss | ⊢ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) |
| 27 | 25 26 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 29 | 28 16 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 30 | 1 18 19 20 21 10 24 29 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑆 ) 𝑌 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 31 | 2 21 | ressmulr | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐻 ) ) |
| 32 | ofeq | ⊢ ( ( .r ‘ 𝑅 ) = ( .r ‘ 𝐻 ) → ∘f ( .r ‘ 𝑅 ) = ∘f ( .r ‘ 𝐻 ) ) | |
| 33 | 12 31 32 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ∘f ( .r ‘ 𝑅 ) = ∘f ( .r ‘ 𝐻 ) ) |
| 34 | 33 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝐻 ) 𝑌 ) ) |
| 35 | 30 34 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑆 ) 𝑌 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝐻 ) 𝑌 ) ) |
| 36 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 37 | 5 18 | ressvsca | ⊢ ( 𝐵 ∈ V → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑃 ) ) |
| 38 | 36 37 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑃 ) ) |
| 39 | 38 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) 𝑌 ) ) |
| 40 | 17 35 39 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) 𝑌 ) ) |