This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset inheritance for set exponentiation. Theorem 99 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapss | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → 𝑓 : 𝐶 ⟶ 𝐴 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝑓 : 𝐶 ⟶ 𝐴 ) |
| 3 | simplr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝐴 ⊆ 𝐵 ) | |
| 4 | 2 3 | fssd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝑓 : 𝐶 ⟶ 𝐵 ) |
| 5 | simpll | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝐵 ∈ 𝑉 ) | |
| 6 | elmapex | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) | |
| 7 | 6 | simprd | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → 𝐶 ∈ V ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝐶 ∈ V ) |
| 9 | 5 8 | elmapd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) ↔ 𝑓 : 𝐶 ⟶ 𝐵 ) ) |
| 10 | 4 9 | mpbird | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) ) → 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) ) |
| 11 | 10 | ex | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐶 ) → 𝑓 ∈ ( 𝐵 ↑m 𝐶 ) ) ) |
| 12 | 11 | ssrdv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |