This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 9-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescabs.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| rescabs.h | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | ||
| rescabs.j | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | ||
| rescabs.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| rescabs.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | ||
| Assertion | rescabs | ⊢ ( 𝜑 → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescabs.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 2 | rescabs.h | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 3 | rescabs.j | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | |
| 4 | rescabs.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 5 | rescabs.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | |
| 6 | eqid | ⊢ ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) | |
| 7 | ovexd | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) | |
| 8 | 4 5 | ssexd | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 9 | 6 7 8 3 | rescval2 | ⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) | |
| 11 | ovexd | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) | |
| 12 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ∈ V ) |
| 13 | eqid | ⊢ ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) | |
| 14 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 15 | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 16 | 15 | simp1i | ⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
| 17 | 14 16 | setsnid | ⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 18 | 13 17 | ressid2 | ⊢ ( ( ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 19 | 10 11 12 18 | syl3anc | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 21 | ovex | ⊢ ( 𝐶 ↾s 𝑆 ) ∈ V | |
| 22 | 8 8 | xpexd | ⊢ ( 𝜑 → ( 𝑇 × 𝑇 ) ∈ V ) |
| 23 | 3 22 | fnexd | ⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐽 ∈ V ) |
| 25 | setsabs | ⊢ ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝐽 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) | |
| 26 | 21 24 25 | sylancr | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 27 | eqid | ⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 29 | 27 28 | ressbas | ⊢ ( 𝑆 ∈ 𝑊 → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 30 | 4 29 | syl | ⊢ ( 𝜑 → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 31 | 30 | sseq1d | ⊢ ( 𝜑 → ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ 𝑇 ↔ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) ) |
| 32 | 31 | biimpar | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ 𝑇 ) |
| 33 | inss2 | ⊢ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) | |
| 34 | 33 | a1i | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
| 35 | 32 34 | ssind | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) |
| 36 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ⊆ 𝑆 ) |
| 37 | 36 | ssrind | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) |
| 38 | 35 37 | eqssd | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) = ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 40 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑆 ∈ 𝑊 ) |
| 41 | 28 | ressinbas | ⊢ ( 𝑆 ∈ 𝑊 → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 42 | 40 41 | syl | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 43 | 28 | ressinbas | ⊢ ( 𝑇 ∈ V → ( 𝐶 ↾s 𝑇 ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 44 | 12 43 | syl | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑇 ) = ( 𝐶 ↾s ( 𝑇 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 45 | 39 42 44 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 47 | 20 26 46 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 48 | simpr | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) | |
| 49 | ovexd | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ) | |
| 50 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ∈ V ) |
| 51 | 13 17 | ressval2 | ⊢ ( ( ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 52 | 48 49 50 51 | syl3anc | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 53 | ovexd | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝐶 ↾s 𝑆 ) ∈ V ) | |
| 54 | 16 | necomi | ⊢ ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) |
| 55 | 54 | a1i | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
| 56 | 4 4 | xpexd | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V ) |
| 57 | 2 56 | fnexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐻 ∈ V ) |
| 59 | fvex | ⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ∈ V | |
| 60 | 59 | inex2 | ⊢ ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V |
| 61 | 60 | a1i | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V ) |
| 62 | fvex | ⊢ ( Hom ‘ ndx ) ∈ V | |
| 63 | fvex | ⊢ ( Base ‘ ndx ) ∈ V | |
| 64 | 62 63 | setscom | ⊢ ( ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( 𝐻 ∈ V ∧ ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) ∈ V ) ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 65 | 53 55 58 61 64 | syl22anc | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 66 | eqid | ⊢ ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) | |
| 67 | eqid | ⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) | |
| 68 | 66 67 | ressval2 | ⊢ ( ( ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ∧ ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 69 | 48 53 50 68 | syl3anc | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) ) |
| 70 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝑇 ⊆ 𝑆 ) |
| 71 | ressabs | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) | |
| 72 | 4 70 71 | syl2an2r | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 73 | 69 72 | eqtr3d | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 74 | 73 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Base ‘ ndx ) , ( 𝑇 ∩ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 75 | 52 65 74 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 76 | 75 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 77 | ovex | ⊢ ( 𝐶 ↾s 𝑇 ) ∈ V | |
| 78 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → 𝐽 ∈ V ) |
| 79 | setsabs | ⊢ ( ( ( 𝐶 ↾s 𝑇 ) ∈ V ∧ 𝐽 ∈ V ) → ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) | |
| 80 | 77 78 79 | sylancr | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 81 | 76 80 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ⊆ 𝑇 ) → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 82 | 47 81 | pm2.61dan | ⊢ ( 𝜑 → ( ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 83 | 9 82 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 84 | eqid | ⊢ ( 𝐶 ↾cat 𝐻 ) = ( 𝐶 ↾cat 𝐻 ) | |
| 85 | 84 1 4 2 | rescval2 | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 86 | 85 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ↾cat 𝐽 ) ) |
| 87 | eqid | ⊢ ( 𝐶 ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) | |
| 88 | 87 1 8 3 | rescval2 | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 89 | 83 86 88 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |