This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescabs2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| rescabs2.j | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | ||
| rescabs2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| rescabs2.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | ||
| Assertion | rescabs2 | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝑆 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescabs2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 2 | rescabs2.j | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | |
| 3 | rescabs2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 4 | rescabs2.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | |
| 5 | ressabs | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) = ( 𝐶 ↾s 𝑇 ) ) |
| 7 | 6 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 8 | eqid | ⊢ ( ( 𝐶 ↾s 𝑆 ) ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑆 ) ↾cat 𝐽 ) | |
| 9 | ovexd | ⊢ ( 𝜑 → ( 𝐶 ↾s 𝑆 ) ∈ V ) | |
| 10 | 3 4 | ssexd | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 11 | 8 9 10 2 | rescval2 | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝑆 ) ↾cat 𝐽 ) = ( ( ( 𝐶 ↾s 𝑆 ) ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 12 | eqid | ⊢ ( 𝐶 ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) | |
| 13 | 12 1 10 2 | rescval2 | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐽 ) = ( ( 𝐶 ↾s 𝑇 ) sSet 〈 ( Hom ‘ ndx ) , 𝐽 〉 ) ) |
| 14 | 7 11 13 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝑆 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |