This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015) (Proof shortened by AV, 7-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsid.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| setsnid.n | ⊢ ( 𝐸 ‘ ndx ) ≠ 𝐷 | ||
| Assertion | setsnid | ⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsid.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 2 | setsnid.n | ⊢ ( 𝐸 ‘ ndx ) ≠ 𝐷 | |
| 3 | id | ⊢ ( 𝑊 ∈ V → 𝑊 ∈ V ) | |
| 4 | 1 3 | strfvnd | ⊢ ( 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) |
| 5 | ovex | ⊢ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ∈ V | |
| 6 | 5 1 | strfvn | ⊢ ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) = ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) |
| 7 | setsres | ⊢ ( 𝑊 ∈ V → ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) = ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ) | |
| 8 | 7 | fveq1d | ⊢ ( 𝑊 ∈ V → ( ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) ) |
| 9 | fvex | ⊢ ( 𝐸 ‘ ndx ) ∈ V | |
| 10 | eldifsn | ⊢ ( ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) ↔ ( ( 𝐸 ‘ ndx ) ∈ V ∧ ( 𝐸 ‘ ndx ) ≠ 𝐷 ) ) | |
| 11 | 9 2 10 | mpbir2an | ⊢ ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) |
| 12 | fvres | ⊢ ( ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) → ( ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) |
| 14 | fvres | ⊢ ( ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) → ( ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) | |
| 15 | 11 14 | ax-mp | ⊢ ( ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) |
| 16 | 8 13 15 | 3eqtr3g | ⊢ ( 𝑊 ∈ V → ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) |
| 17 | 6 16 | eqtrid | ⊢ ( 𝑊 ∈ V → ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) |
| 18 | 4 17 | eqtr4d | ⊢ ( 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) ) |
| 19 | 1 | str0 | ⊢ ∅ = ( 𝐸 ‘ ∅ ) |
| 20 | 19 | eqcomi | ⊢ ( 𝐸 ‘ ∅ ) = ∅ |
| 21 | eqid | ⊢ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) = ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) | |
| 22 | reldmsets | ⊢ Rel dom sSet | |
| 23 | 20 21 22 | oveqprc | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) ) |
| 24 | 18 23 | pm2.61i | ⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) |