This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescval.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| rescval2.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| rescval2.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| rescval2.3 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | ||
| Assertion | rescval2 | ⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| 2 | rescval2.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 3 | rescval2.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 4 | rescval2.3 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 5 | 3 3 | xpexd | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V ) |
| 6 | fnex | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 8 | 1 | rescval | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V ) → 𝐷 = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 9 | 2 7 8 | syl2anc | ⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 10 | 4 | fndmd | ⊢ ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 11 | 10 | dmeqd | ⊢ ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) ) |
| 12 | dmxpid | ⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝜑 → dom dom 𝐻 = 𝑆 ) |
| 14 | 13 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 ↾s dom dom 𝐻 ) = ( 𝐶 ↾s 𝑆 ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐶 ↾s dom dom 𝐻 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 16 | 9 15 | eqtrd | ⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |